Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 94 results
Snippet view Table view Download
Click the to add this resource to a Collection
  • RRID:SCR_012870

    This resource has 1+ mentions.

http://gmod.org/wiki/Flash_GViewer

Flash GViewer is a customizable Flash movie that can be easily inserted into a web page to display each chromosome in a genome along with the locations of individual features on the chromosomes. It is intended to provide an overview of the genomic locations of a specific set of features - eg. genes and QTLs associated with a specific phenotype, etc. rather than as a way to view all features on the genome. The features can hyperlink out to a detail page to enable to GViewer to be used as a navigation tool. In addition the bands on the chromosomes can link to defineable URL and new region selection sliders can be used to select a specific chromosome region and then link out to a genome browser for higher resolution information. Genome maps for Rat, Mouse, Human and C. elegans are provided but other genome maps can be easily created. Annotation data can be provided as static text files or produced as XML via server scripts. This tool is not GO-specific, but was built for the purpose of viewing GO annotation data. Platform: Online tool

Proper citation: Flash Gviewer (RRID:SCR_012870) Copy   


  • RRID:SCR_010963

    This resource has 10+ mentions.

http://www.complex.iastate.edu/download/Picky/

A software tool for selecting optimal oligonucleotides (oligos) that allows the rapid and efficient determination of gene-specific oligos based on given gene sets, and can be used for large, complex genomes such as human, mouse, or maize.

Proper citation: Picky (RRID:SCR_010963) Copy   


  • RRID:SCR_006028

    This resource has 1+ mentions.

http://worfdb.dfci.harvard.edu/

Database that integrates and disseminates the data from the cloning of complete set of predicted protein-encoding ORFs of Caenorhabditis elegans. It also allows the community to search for availability and quality of cloned ORFs. So far, ORF sequence tags (OSTs) obtained for all individual clones have allowed exon structure corrections for ORFs originally predicted by the C. elegans sequencing consortium. The database contains this OST information along with data pertinent to the cloning process.

Proper citation: WorfDB (RRID:SCR_006028) Copy   


  • RRID:SCR_006829

    This resource has 10+ mentions.

http://gbrowse.org/

A database and interactive web site for manipulating and displaying annotations on genomes. Features include: detailed views of the genome; use of a variety of premade or personally made glyphs ; customizable order and appearance of tracks by administrators and end-users; search by annotation ID, name, or comment; support of third party annotation using GFF formats; DNA and GFF dumps; connectivity to different databases, including BioSQL and Chado; and a customizable plug-in architecture (e.g. run BLAST, find oligonucleotides, design primers, etc.). GBrowse is distributed as source code for Macintosh OS X, UNIX and Linux platforms, and as pre-packaged binaries for Windows machines. It can be installed using the standard Perl module build procedure, or automated using a network-based install script. In order to use the net installer, you will need to have Perl 5.8.6 or higher and the Apache web server installed. The wiki portion accepts data submissions.

Proper citation: GBrowse (RRID:SCR_006829) Copy   


  • RRID:SCR_008886

http://dnatraffic.ibb.waw.pl/

DNAtraffic database is dedicated to be an unique comprehensive and richly annotated database of genome dynamics during the cell life. DNAtraffic contains extensive data on the nomenclature, ontology, structure and function of proteins related to control of the DNA integrity mechanisms such as chromatin remodeling, DNA repair and damage response pathways from eight model organisms commonly used in the DNA-related study: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on diseases related to the assembled human proteins. Database is richly annotated in the systemic information on the nomenclature, chemistry and structure of the DNA damage and drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA metabolism pathway analysis. Database includes illustrations of pathway, damage, protein and drug. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines it has to be extensively linked to numerous external data sources. Database represents the result of the manual annotation work aimed at making the DNAtraffic database much more useful for a wide range of systems biology applications. DNAtraffic database is freely available and can be queried by the name of DNA network process, DNA damage, protein, disease, and drug.

Proper citation: DNAtraffic (RRID:SCR_008886) Copy   


  • RRID:SCR_013222

    This resource has 10+ mentions.

http://dorina.mdc-berlin.de/rbp_browser/dorina.html

In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We provide a database that supports the quest for deciphering this regulatory code. Within doRiNA, we are systematically curating, storing and integrating binding site data for RBPs and miRNAs. Users are free to take a target (mRNA) or regulator (RBP and/or miRNA) centric view on the data. We have implemented a database framework with short query response times for complex searches (e.g. asking for all targets of a particular combination of regulators). All search results can be browsed, inspected and analyzed in conjunction with a huge selection of other genome-wide data, because our database is directly linked to a local copy of the UCSC genome browser. At the time of writing, doRiNA encompasses RBP data for the human, mouse and worm genomes. For computational miRNA target site predictions, we provide an update of PicTar predictions.

Proper citation: doRiNA (RRID:SCR_013222) Copy   


https://www.sourcebioscience.com/products/life-sciences-research/clones/rnai-resources/c-elegans-rnai-collection-ahringer/

C. elegans RNAi feeding library distributed by Source BioScience Ltd. Designed for genome wide study of gene function in C. elegans through loss of function studies.

Proper citation: C. elegans RNAi Collection (Ahringer) (RRID:SCR_017064) Copy   


http://lifespandb.sageweb.org/

Database that collects published lifespan data across multiple species. The entire database is available for download in various formats including XML, YAML and CSV.

Proper citation: Lifespan Observations Database (RRID:SCR_001609) Copy   


  • RRID:SCR_001624

    This resource has 100+ mentions.

http://www.bioguo.org/AnimalTFDB/

A comprehensive transcription factor (TF) database in which they identified and classified all the genome-wide TFs in 50 sequenced animal genomes (Ensembl release version 60). In addition to TFs, it also collects transcription co-factors and chromatin remodeling factors of those genomes, which play regulatory roles in transcription. Here they defined the TFs as proteins containing a sequence-specific DNA-binding domain (DBD) and regulating target gene expression. Currently, the AnimalTFDB classifies all the animal TFs into 72 families according to their conserved DBDs. Gene lists of transcription factors, transcription co-factors and chromatin remodeling factors of each species are available for downloading.

Proper citation: AnimalTFDB (RRID:SCR_001624) Copy   


  • RRID:SCR_001523

    This resource has 1000+ mentions.

http://mint.bio.uniroma2.it/

A database that focuses on experimentally verified protein-protein interactions mined from the scientific literature by expert curators. The curated data can be analyzed in the context of the high throughput data and viewed graphically with the MINT Viewer. This collection of molecular interaction databases can be used to search for, analyze and graphically display molecular interaction networks and pathways from a wide variety of species. MINT is comprised of separate database components. HomoMINT, is an inferred human protein interatction database. Domino, is database of domain peptide interactions. VirusMINT explores the interactions of viral proteins with human proteins. The MINT connect viewer allows you to enter a list of proteins (e.g. proteins in a pathway) to retrieve, display and download a network with all the interactions connecting them.

Proper citation: MINT (RRID:SCR_001523) Copy   


  • RRID:SCR_002380

    This resource has 10000+ mentions.

http://www.uniprot.org/

Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.

Proper citation: UniProt (RRID:SCR_002380) Copy   


  • RRID:SCR_002277

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/ieb/research/acembly/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 29, 2016. AceView offers an integrated view of the human, nematode and Arabidopsis genes reconstructed by co-alignment of all publicly available mRNAs and ESTs on the genome sequence. Our goals are to offer a reliable up-to-date resource on the genes and their functions and to stimulate further validating experiments at the bench. AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals' transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated. Our goals are to offer an up-to-date resource on the genes, in the hope to stimulate further experiments at the bench, or to help medical research. AceView can be queried by meaningful words or groups of words as well as by most standard identifiers, such as gene names, Entrez Gene ID, UniGene ID, GenBank accessions.

Proper citation: AceView (RRID:SCR_002277) Copy   


http://gpcr.biocomp.unibo.it/esldb

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 22,2022. database of protein subcellular localization annotation for eukaryotic organisms. It contains experimental annotations derived from primary protein databases, homology based annotations and computational predictions.

Proper citation: eSLDB - eukaryotic Subcellular Localization database (RRID:SCR_000052) Copy   


  • RRID:SCR_005803

    This resource has 100+ mentions.

http://the_brain.bwh.harvard.edu/uniprobe/

Database that hosts experimental data from universal protein binding microarray (PBM) experiments (Berger et al., 2006) and their accompanying statistical analyses from prokaryotic and eukaryotic organisms, malarial parasites, yeast, worms, mouse, and human. It provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ("words") of length k ("k-mers"), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. The database's web tools include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences.

Proper citation: UniPROBE (RRID:SCR_005803) Copy   


  • RRID:SCR_016159

    This resource has 10+ mentions.

https://github.com/lucventurini/mikado/

Mikado is a lightweight Python3 pipeline whose purpose is to facilitate the identification of expressed loci from RNA-Seq data * and to select the best models in each locus.

Proper citation: Mikado (RRID:SCR_016159) Copy   


  • RRID:SCR_004253

http://aquila.bio.nyu.edu/NBrowse2/NBrowse.html

Interactive graphical browser for biological networks and molecular interaction data. The N-Browse server at NYU currently provides access to a variety of large-scale functional genomic datasets from several species.

Proper citation: N-Browse (RRID:SCR_004253) Copy   


  • RRID:SCR_001623

    This resource has 10+ mentions.

http://ancora.genereg.net/

Web resource that provides data and tools for exploring genomic organization of highly conserved noncoding elements (HCNEs) for multiple genomes. It includes a genome browser that shows HCNE locations and features novel HCNE density plots as a powerful tool to discover developmental regulatory genes and distinguish their regulatory elements and domains. They identify HCNEs as non-exonic regions of high similarity between genome sequences from distantly related organisms, such as human and fish, and provide tools for studying the distribution of HCNEs along chromosomes. Major peaks of HCNE density along chromosomes most often coincide with developmental regulatory genes. Their aim with this site is to aid discovery of developmental regulatory genes, their regulatory domains and their fundamental regulatory elements.

Proper citation: Ancora (RRID:SCR_001623) Copy   


  • RRID:SCR_001421

https://scicrunch.org/scicrunch/data/source/nlx_154697-1/search?q=*&l=

Integrated Animals is a virtual database currently indexing available animal strains and mutants from: AGSC (Ambystoma), BCBC (mice), BDSC (flies), CWRU Cystic Fibrosis Mouse Models (mice), DGGR (flies), FlyBase (flies), IMSR (mice), MGI (mice), MMRRC (mice), NSRRC (pig), NXR (Xenopus), RGD (rats), Sperm Stem Cell Libraries for Biological Research (rats), Tetrahymena Stock Center (Tetrahymena), WormBase (worms), XGSC (Xiphophorus), ZFIN (zebrafish), and ZIRC (zebrafish).

Proper citation: Integrated Animals (RRID:SCR_001421) Copy   


http://www.ncbi.nlm.nih.gov/HTGS/

Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.

Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy   


  • RRID:SCR_002117

    This resource has 10+ mentions.

http://www.proteinlounge.com

Complete siRNA target database, complete Peptide-Antigen target database and a Kinase-Phosphatase database. They have also developed the largest database of illustrated signal transduction pathways, which are interconnected to their extensive protein database and online gene / protein analysis tools. The interactive web-based databases and software help life-scientists understand the complexity of systems biology. Systems biology efforts focus on understanding cellular networks, protein interactions involved in cell signaling, mechanisms of cell survival and apoptosis leading to development or identification of drug candidates against a variety of diseases. In the post-genomic era, one of the major concerns for life-science researchers is the organization of gene / protein data. Protein Lounge has met this concern by organizing all necessary data about genes / proteins into one portal.

Proper citation: Protein Lounge (RRID:SCR_002117) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X