Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 out of 5 results
Snippet view Table view Download
Click the to add this resource to a Collection
  • RRID:SCR_003069

    This resource has 100+ mentions.

Ratings or validation data are available for this resource

http://brainmap.org/

A community database of published functional and structural neuroimaging experiments with both metadata descriptions of experimental design and activation locations in the form of stereotactic coordinates (x,y,z) in Talairach or MNI space. BrainMap provides not only data for meta-analyses and data mining, but also distributes software and concepts for quantitative integration of neuroimaging data. The goal of BrainMap is to develop software and tools to share neuroimaging results and enable meta-analysis of studies of human brain function and structure in healthy and diseased subjects. It is a tool to rapidly retrieve and understand studies in specific research domains, such as language, memory, attention, reasoning, emotion, and perception, and to perform meta-analyses of like studies. Brainmap contains the following software: # Sleuth: database searches and Talairach coordinate plotting (this application requires a username and password) # GingerALE: performs meta-analyses via the activation likelihood estimation (ALE) method; also converts coordinates between MNI and Talairach spaces using icbm2tal # Scribe: database entry of published functional neuroimaging papers with coordinate results

Proper citation: brainmap.org (RRID:SCR_003069) Copy   


  • RRID:SCR_009651

    This resource has 1+ mentions.

http://www.nitrc.org/projects/vmagnotta/

A Diffusion Tensor fiber tracking software suite that includes streamline tracking tools. The fiber tracking includes a guided tracking tool that integrates apriori information into a streamlines algorithm. This suite of programs is built using the NA-MIC toolkit and uses the Slicer3 execution model framework to define the command line arguments. These tools can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3. NOTE: All new development is being managed in a github repository. Please visit, https://github.com/BRAINSia/BRAINSTools

Proper citation: GTRACT (RRID:SCR_009651) Copy   


http://research.mssm.edu/cnic/

Center to advance research and training in mathematical, computational and modern imaging approaches to understanding the brain and its functions. Software tools and associated reconstruction data produced in the center are available. Researchers study the relationships between neural function and structure at levels ranging from the molecular and cellular, through network organization of the brain. This involves the development of new computational and analytic tools for imaging and visualization of 3-D neural morphology, from the gross topologic characteristics of the dendritic arbor to the fine structure of spines and their synapses. Numerical simulations of neural mechanisms based on these structural data are compared with in-vivo and in-vitro electrophysiological recordings. The group also develops new theoretical and analytic approaches to exploring the function of neural models of working memory. The goal of this analytic work is to combine biophysically realistic models and simulations with reduced mathematical models that capture essential dynamical behaviors while reproducing the functionally important features of experimental data. Research areas include: Imaging Studies, Volume Integration, Visualization Techniques, Medial Axis Extraction, Spine Detection and Classification, Applications of Rayburst, Analysis of Spatially Complex Structures, Computational Modeling, Mathematical and Analytic Studies

Proper citation: Computational Neurobiology and Imaging Center (RRID:SCR_013317) Copy   


  • RRID:SCR_002563

http://labs.nri.ucsb.edu/reese/benjamin/SA3D.html

A user-friendly, graphical user interface (GUI) that allows statistical and visual manipulations of real and simulated three-dimensional spatial point patterns. The analyses use files containing sets of X, Y, Z coordinates. These point patterns are frequently coordinates of cells of specific cell classes within in volumes of tissue derived from microscopy analyses. The analyses are scale independent so spatial analyses of coordinates from larger and smaller scale distributions are possible. The software can also generate sample sets of X, Y, Z coordinates for program exploration and modeling purposes.

Proper citation: Spatial Analysis 3D (RRID:SCR_002563) Copy   


  • RRID:SCR_006099

    This resource has 100+ mentions.

http://www.pymvpa.org

A Python package intended to ease statistical learning analyses of large datasets. It offers an extensible framework with a high-level interface to a broad range of algorithms for classification, regression, feature selection, data import and export. While it is not limited to the neuroimaging domain, it is eminently suited for such datasets. PyMVPA is truly free software (in every respect) and additionally requires nothing but free-software to run. Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. This Python-based, cross-platform, open-source software toolbox software toolbox for the application of classifier-based analysis techniques to fMRI datasets makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages.

Proper citation: PyMVPA (RRID:SCR_006099) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X