Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 212 results
Snippet view Table view Download
Click the to add this resource to a Collection

http://www.matrics.ucla.edu/index.html

Cognitive deficits -- including impairments in areas such as memory, attention, and executive function -- are a major determinant and predictor of long-term disability in schizophrenia. Unfortunately, available antipsychotic medications are relatively ineffective in improving cognition. Scientific discoveries during the past decade suggest that there may be opportunities for developing medications that will be effective for improving cognition in schizophrenia. The NIMH has identified obstacles that are likely to interfere with the development of pharmacological agents for treating cognition in schizophrenia. These include: (1) a lack of a consensus as to how cognition in schizophrenia should be measured; (2) differing opinions as to the pharmacological approaches that are most promising; (3) challenges in clinical trial design; (4) concerns in the pharmaceutical industry regarding the US Food and Drug Administration''s (FDA) approaches to drug approval for this indication; and (5) issues in developing a research infrastructure that can carry out clinical trials of promising drugs. The MATRICS program will bring together representatives of academia, industry, and government in a consensus process for addressing all of these obstacles. Specific goals of the NIMH MATRICS are: * To catalyze regulatory acceptance of cognition in schizophrenia as a target for drug registration. * To promote development of novel compounds to enhance cognition in schizophrenia. * Leverage economic research power of industry to focus on important but neglected clinical targets. * Identify lead compounds and if deemed feasible, support human proof of concept trials for cognition in schizophrenia.

Proper citation: MATRICS - Measurement And Treatment Research to Improve Cognition in Schizophrenia (RRID:SCR_005644) Copy   


http://www.patternlabforproteomics.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented July 5, 2018. Gene Ontology Explorer (GOEx) combines data from protein fold changes with GO over-representation statistics to help draw conclusions in proteomic experiments. It is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. A recent hack included in GOEx is to load the sparse matrix index file directly into GOEx, instead of going through the report generation using the AC/T-fold methods. This makes it easy for GOEx to analyze any list of proteins as long as the list follows the index file format (described in manuscript) . Please note that if using this alternative strategy, there will be no protein fold information. Platform: Windows compatible

Proper citation: GOEx - Gene Ontology Explorer (RRID:SCR_005779) Copy   


  • RRID:SCR_002518

    This resource has 100+ mentions.

http://www.nitrc.org/projects/penncnv

A free software tool for Copy Number Variation (CNV) detection from SNP genotyping arrays. Currently it can handle signal intensity data from Illumina and Affymetrix arrays. With appropriate preparation of file format, it can also handle other types of SNP arrays and oligonucleotide arrays. PennCNV implements a hidden Markov model (HMM) that integrates multiple sources of information to infer CNV calls for individual genotyped samples. It differs form segmentation-based algorithm in that it considered SNP allelic ratio distribution as well as other factors, in addition to signal intensity alone. In addition, PennCNV can optionally utilize family information to generate family-based CNV calls by several different algorithms. Furthermore, PennCNV can generate CNV calls given a specific set of candidate CNV regions, through a validation-calling algorithm.

Proper citation: PennCNV (RRID:SCR_002518) Copy   


https://www.nitrc.org/projects/gmac_2012/

Open-source software toolbox implemented multivariate spectral Granger Causality Analysis for studying brain connectivity using fMRI data. Available features are: fMRI data importing, network nodes definition, time series preprocessing, multivariate autoregressive modeling, spectral Granger causality indexes estimation, statistical significance assessment using surrogate data, network analysis and visualization of connectivity results. All functions are integrated into a graphical user interface developed in Matlab environment. Dependencies: Matlab, BIOSIG, SPM, MarsBar.

Proper citation: GMAC: A Matlab toolbox for spectral Granger causality analysis of fMRI data (RRID:SCR_009581) Copy   


  • RRID:SCR_014285

http://dx.doi.org/10.5281/zenodo.21157

A graphical source code file used for an automated motion detection and reward system for animal training (see comment for full paper title). It was designed on the LabVIEW programming system. Running the program requires the appropriate LabVIEW runtime software from National Instruments Corporation.

Proper citation: Monkey Motion (RRID:SCR_014285) Copy   


http://national_databank.mclean.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.

Proper citation: National Brain Databank (RRID:SCR_003606) Copy   


http://www.nimh.nih.gov/educational-resources/index.shtml

A portal to educational resources.

Proper citation: NIMH Educational Resources (RRID:SCR_004045) Copy   


  • RRID:SCR_004283

    This resource has 10+ mentions.

http://brainarchitecture.org/

Evolving portal that will provide interactive tools and resources to allow researchers, clinicians, and students to discover, analyze, and visualize what is known about the brain's organization, and what the evidence is for that knowledge. This project has a current experimental focus: creating the first brainwide mesoscopic connectivity diagram in the mouse. Related efforts for the human brain currently focus on literature mining and an Online Brain Atlas Reconciliation Tool. The primary goal of the Brain Architecture Project is to assemble available knowledge about the structure of the nervous system, with an ultimate emphasis on the human CNS. Such information is currently scattered in research articles, textbooks, electronic databases and datasets, and even as samples on laboratory shelves. Pooling the knowledge across these heterogeneous materials - even simply getting to know what we know - is a complex challenge that requires an interdisciplinary approach and the contributions and support of the greater community. Their approach can be divided into 4 major thrusts: * Literature Curation and Text Mining * Computational Analysis * Resource Development * Experimental Efforts

Proper citation: Brain Architecture Project (RRID:SCR_004283) Copy   


http://yogo.msu.montana.edu/

A set of software tools created to rapidly build scientific data-management applications. These applications will enhance the process of data annotation, analysis, and web publication. The system provides a set of easy-to-use software tools for data sharing by the scientific community. It enables researchers to build their own custom-designed data management systems. The problem of scientific data management rests on several challenges. These include flexible data storage, a way to share the stored data, tools to curate the data, and history of the data to show provenance. The Yogo Framework gives you the ability to build scientific data management applications that address all of these challenges. The Yogo software is being developed as part of the NeuroSys project. All tools created as part of the Yogo Data Management Framework are open source and released under an OSI approved license.

Proper citation: Yogo Data Management System (RRID:SCR_004239) Copy   


http://www.brainarchitecture.org/mouse-home

An atlas project whose goal is to enerate brainwide maps of inter-regional neural connectivity that specify the inputs and outputs of every brain region, at a "mesoscopic" level of analysis. A 3D injection viewer is used to view the mouse brain. To determine the outputs of a brain region, anterograde tracers are used which are taken up by neurons locally ("the input"), then transported actively down the axons to the "output regions." The whole brain is then sliced thinly, and each slice is digitally imaged. These 2-D images are reconstructed in 3D. The majority of the resulting 3-D brain image is unlabeled. Only the injected region and its output regions have tracer in them, allowing for identification of this small fraction of the connectivity map. This procedure is repeated identically, to account for individual variability. To determine the inputs to the same brain region as above, a retrograde tracer is injected in the same stereotaxic location ("the input"), and the process is repeated. In order to accumulate data from different mice (each of whom has a slightly different brain shape and size), 3-D spatial normalization is performed using registration algorithms. These gigapixel images of whole-brain sections can be zoomed to show individual neurons and their processes, providing a "virtual microscope." Each sampled brain is represented in about 500 images, each image showing an optical section through a 20 micron-thick slice of brain tissue. A multi-resolution viewer permits users to journey through each brain, following the pathways taken through three-dimensional brain space by tracer-labeled neuronal pathways. A key point is that at the mid-range "mesoscopic" scale, the team expects to assemble a picture of connections that are stereotypical and probably genetically determined in a species-specific manner. By dividing the volume of a hemisphere of the mouse brain into 250 equidistant, predefined grid-points, and administering four different kinds of tracer injections at each grid point -- in different animals of the same sex and age a complete wiring diagram that will be stitched together in "shotgun" fashion from the full dataset.

Proper citation: Mouse Brain Architecture Project (RRID:SCR_004683) Copy   


http://gara.bio.uci.edu

THIS RESOURCE IS NO LONGER IN SERVICE, documented on April 24, 2017. Database of images depicting the spatial distribution of 2-deoxyglucose uptake evoked in the glomerular layer of the rat olfactory bulb in response to a wide range of defined odorant stimuli. A number of different display and comparison tools are provided allowing patterns to be viewed from different perspectives, and descriptions of the methods and interpretations of these data are provided. Some of the more advanced tools require you to download software.

Proper citation: Glomerular Activity Response Archive (RRID:SCR_002089) Copy   


http://www.lajollaneuroscience.org/

Our NINDS Center Core Grant supports centralized resources and facilities shared by investigators with existing NINDS-funded research projects. Our Center is composed of three research cores, each of which will enrich the effectiveness of ongoing research, and promote new research directions. The three Core facilities support Electrophysiology, Neuropathology / Histology, and High-Throughput/High-Content Chemical and Genomic Library screening. By making these important Core Services available to the local Neuroscience community, the La Jolla Neurosciences Program hopes to promote the study of how the nervous system works and develop treatments for nervous system diseases. The cores and their services are available to La Jolla neuroscientists. Core services are available to NINDS-supported neuroscience projects from local investigators as well as young neuroscientists prior to obtaining their first NIH-funded grant. * Electrophysiology: SBMRI Electrophysiology ** The Electrophysiology Core consists of the Sanford-Burnham Electrophysiology Facility. This facility can perform patch-clamp intracellular and extracellular field recordings on a range of material including cultured cells and brain slices. The Sanford-Burnham facility emphasizes electrophysiological analysis of cultured cells and the detailed electrical properties of channels, receptors and recombinant proteins expressed in Xenopus oocytes or mammalian cells. * Neuropathology: UCSD Neuropathology ** The Neuropathology laboratory applies immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy to analysis of neurological disease in animal models. * Chemical Library Screening: SBIMR Assay Development, SBIMR Chemical Library Screening, SBIMR Cheminformatics, SBIMR High-content Screening ** The Chemical Library Screening core offers high-throughput screening (HTS) of biochemical and cell-based array using traditional HTS readouts and automated microscopy for high-content screening (HCS)> These facilities also offer array development and screening, as well as cheminformatics and medicinal chemistry.

Proper citation: La Jolla Interdisciplinary Neurosciences Center (RRID:SCR_002772) Copy   


  • RRID:SCR_002793

    This resource has 10+ mentions.

Ratings or validation data are available for this resource

http://www.cognitiveatlas.org/

Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.

Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy   


  • RRID:SCR_002759

    This resource has 10+ mentions.

http://sumsdb.wustl.edu/sums/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures

Proper citation: SumsDB (RRID:SCR_002759) Copy   


  • RRID:SCR_003069

    This resource has 100+ mentions.

Ratings or validation data are available for this resource

http://brainmap.org/

A community database of published functional and structural neuroimaging experiments with both metadata descriptions of experimental design and activation locations in the form of stereotactic coordinates (x,y,z) in Talairach or MNI space. BrainMap provides not only data for meta-analyses and data mining, but also distributes software and concepts for quantitative integration of neuroimaging data. The goal of BrainMap is to develop software and tools to share neuroimaging results and enable meta-analysis of studies of human brain function and structure in healthy and diseased subjects. It is a tool to rapidly retrieve and understand studies in specific research domains, such as language, memory, attention, reasoning, emotion, and perception, and to perform meta-analyses of like studies. Brainmap contains the following software: # Sleuth: database searches and Talairach coordinate plotting (this application requires a username and password) # GingerALE: performs meta-analyses via the activation likelihood estimation (ALE) method; also converts coordinates between MNI and Talairach spaces using icbm2tal # Scribe: database entry of published functional neuroimaging papers with coordinate results

Proper citation: brainmap.org (RRID:SCR_003069) Copy   


http://www.neurogems.org/neosim/

Simulation software that includes a parallel discrete event simulation kernel for running models of spiking neurons on a cluster of workstations. Models are specified using NeuroML, and visualized using Java2D. Simulation components are distributed across a parallel machine or network and communicate using timestamped events. The successor NEOSIM2 project under the NeuroGems umbrella at Edinburgh University (http://www.neurogems.org) continues to distribute the software, http://www.neurogems.org/neosim2/ The NEOSIM project includes: * a parallel discrete event simulation kernel for running models of spiking neural networks on clusters of machines. * a modules kit for extending the behavior of neurons and connectivity patterns. * a user interface for building and running simulations. OS: Linux, MS-Windows

Proper citation: Neural Open Simulation (RRID:SCR_002916) Copy   


http://www.bisti.nih.gov/

A consortium of representatives from each of the NIH institutes and centers. BISTI was established in May 2000 to serve as the focus of biomedical computing issues at the NIH. The mission of BISTI is to make optimal use of computer science and technology to address problems in biology and medicine by fostering new basic understandings, collaborations, and transdisciplinary initiatives between the computational and biomedical sciences. In support of this mission, the BISTI coordinates research grants, training opportunities, and scientific symposia associated with biomedical computing. Regular monthly meetings are conducted to discuss program status, future needs and directions, and topics of interest to the bioinformatics community.

Proper citation: Biomedical Information Science and Technology Initiative (RRID:SCR_003123) Copy   


  • RRID:SCR_003142

    This resource has 10+ mentions.

http://braininfo.rprc.washington.edu

Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.

Proper citation: BrainInfo (RRID:SCR_003142) Copy   


http://bbid.irp.nia.nih.gov/

Database of images of putative biological pathways, macromolecular structures, gene families, and cellular relationships. It is of use to those who are working with large sets of genes or proteins using cDNA arrays, functional genomics, or proteomics. The rationale for this collection is that: # Except in a few cases, information on most biological pathways in higher eukaryotes is non-existent, incomplete, or conflicting. # Similar biological pathways differ by tissue context, developmental stages, stimulatory events, or for other complex reasons. This database allows comparisons of different variations of pathways that can be tested empirically. # The goal of this database is to use images created directly by biomedical scientists who are specialists in a particular biological system. It is specifically designed to NOT use average, idealized or redrawn pathways. It does NOT use pathways defined by computer algorithm or information search approaches. # Information on biological pathways in higher eukaryotes generally resides in the images and text of review papers. Much of this information is not easily accessible by current medical reference search engines. # All images are attributable to the original authors. All pathways or other biological systems described are graphic representations of natural systems. Each pathway is to be considered a work in progress. Each carries some degree of error or incompleteness. The end user has the ultimate responsibility to determine the scientific correctness and validity in their particular biological system. Image/pathway submissions are welcome.

Proper citation: Biological Biochemical Image Database (RRID:SCR_003474) Copy   


http://www.brainbank.mclean.org/

A biomaterial supply resource that acquires, processes, stores, and distributes postmortem brain specimens for brain research. Various types of brain tissue are collected, including those with neurological and psychiatric disorders, along with their parents, siblings and offspring. The HBTRC maintains an extensive collection of postmortem human brains from individuals with Huntington's chorea, Alzheimer's disease, Parkinson's disease, and other neurological disorders. In addition, the HBTRC also has a collection of normal-control specimens.

Proper citation: Harvard Brain Tissue Resource Center (RRID:SCR_003316) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X