Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 443 results
Snippet view Table view Download
Click the to add this resource to a Collection
  • RRID:SCR_000564

    This resource has 1+ mentions.

http://www.broadinstitute.org/genome_bio/siphy/

Software that implements rigorous statistical tests to detect bases under selection from a multiple alignment data. It takes full advantage of deeply sequenced phylogenies to estimate both unlikely substitution patterns as well as slowdowns or accelerations in mutation rates. It can be applied as an Hidden Markov Model (HMM), in sliding windows, or to specific regions.

Proper citation: SiPhy (RRID:SCR_000564) Copy   


  • RRID:SCR_000942

    This resource has 1+ mentions.

http://www.brown.edu/Research/Istrail_Lab/hapcompass.php

Software that utilizes a fast cycle basis algorithm for the accurate haplotype assembly of sequence data. It is able to create pairwise SNP phasings.

Proper citation: HapCompass (RRID:SCR_000942) Copy   


  • RRID:SCR_002431

    This resource has 1+ mentions.

http://www.ncdc.noaa.gov/paleo/softlib/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 12,2023. A simple, efficient, process-based forward model of tree-ring growth, requires as inputs only latitude and monthly temperature and precipitation.

Proper citation: VS-Lite (RRID:SCR_002431) Copy   


  • RRID:SCR_002518

    This resource has 100+ mentions.

http://www.nitrc.org/projects/penncnv

A free software tool for Copy Number Variation (CNV) detection from SNP genotyping arrays. Currently it can handle signal intensity data from Illumina and Affymetrix arrays. With appropriate preparation of file format, it can also handle other types of SNP arrays and oligonucleotide arrays. PennCNV implements a hidden Markov model (HMM) that integrates multiple sources of information to infer CNV calls for individual genotyped samples. It differs form segmentation-based algorithm in that it considered SNP allelic ratio distribution as well as other factors, in addition to signal intensity alone. In addition, PennCNV can optionally utilize family information to generate family-based CNV calls by several different algorithms. Furthermore, PennCNV can generate CNV calls given a specific set of candidate CNV regions, through a validation-calling algorithm.

Proper citation: PennCNV (RRID:SCR_002518) Copy   


http://www.sdsc.edu/

Founded in 1985, the San Diego Supercomputer Center (SDSC) enables international science and engineering discoveries through advances in computational science and data-intensive, high-performance computing. SDSC is considered a leader in data-intensive computing, providing resources, services and expertise to the national research community including industry and academia. The mission of SDSC is to extend the reach of scientific accomplishments by providing tools such as high-performance hardware technologies, integrative software technologies, and deep interdisciplinary expertise to these communities. From 1997 to 2004, SDSC extended its leadership in computational science and engineering to form the National Partnership for Advanced Computational Infrastructure (NPACI), teaming with approximately 40 university partners around the country. Today, SDSC is an Organized Research Unit of the University of California, San Diego with a staff of talented scientists, software developers, and support personnel. A broad community of scientists, engineers, students, commercial partners, museums, and other facilities work with SDSC to develop cyberinfrastructure-enabled applications to help manage their extreme data needs. Projects run the gamut from creating astrophysics visualization for the American Museum of Natural History, to supporting more than 20,000 users per day to the Protein Data Bank, to performing large-scale, award-winning simulations of the origin of the universe or how a major earthquake would affect densely populated areas such as southern California. Along with these data cyberinfrastructure tools, SDSC also offers users full-time support including code optimization, training, 24-hour help desk services, portal development and a variety of other services. As one of the NSF's first national supercomputer centers, SDSC served as the data-intensive site lead in the agency's TeraGrid program, a multiyear effort to build and deploy the world's first large-scale infrastructure for open scientific research. SDSC currently provides advanced user support and expertise for XSEDE (Extreme Science and Engineering Discovery Environment) the five-year NSF-funded program that succeeded TeraGrid in mid-2011.

Proper citation: San Diego Supercomputer Center (RRID:SCR_001856) Copy   


  • RRID:SCR_004351

http://www.cs.gsu.edu/~serghei/?q=drut

Software for Discovery and Reconstruction of Unannotated Transcripts in Partially Annotated Genomes from High-Throughput RNA-Seq Data.

Proper citation: DRUT (RRID:SCR_004351) Copy   


  • RRID:SCR_005397

    This resource has 10+ mentions.

http://www.bioextract.org/GuestLogin

An open, web-based system designed to aid researchers in the analysis of genomic data by providing a platform for the creation of bioinformatic workflows. Scientific workflows are created within the system by recording tasks performed by the user. These tasks may include querying multiple, distributed data sources, saving query results as searchable data extracts, and executing local and web-accessible analytic tools. The series of recorded tasks can then be saved as a reproducible, sharable workflow available for subsequent execution with the original or modified inputs and parameter settings. Integrated data resources include interfaces to the National Center for Biotechnology Information (NCBI) nucleotide and protein databases, the European Molecular Biology Laboratory (EMBL-Bank) non-redundant nucleotide database, the Universal Protein Resource (UniProt), and the UniProt Reference Clusters (UniRef) database. The system offers access to numerous preinstalled, curated analytic tools and also provides researchers with the option of selecting computational tools from a large list of web services including the European Molecular Biology Open Software Suite (EMBOSS), BioMoby, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The system further allows users to integrate local command line tools residing on their own computers through a client-side Java applet.

Proper citation: BioExtract (RRID:SCR_005397) Copy   


  • RRID:SCR_005385

    This resource has 1+ mentions.

http://www.biokepler.org

A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data that is distributed on top of the core Kepler scientific workflow system.

Proper citation: bioKepler (RRID:SCR_005385) Copy   


  • RRID:SCR_005477

    This resource has 1+ mentions.

http://carringtonlab.org/resources/cashx

Software pipeline to parse, map, quantify and manage large quantities of sequence data. CASHX is a set of tools that can be used together, or as independent modules on their own. The reference genome alignment tools can be used with any reference sequence in fasta format. The pipeline was designed and tested using Arabidopsis thaliana small RNA reads generated using an Illumina 1G.

Proper citation: CASHX (RRID:SCR_005477) Copy   


  • RRID:SCR_010963

    This resource has 10+ mentions.

http://www.complex.iastate.edu/download/Picky/

A software tool for selecting optimal oligonucleotides (oligos) that allows the rapid and efficient determination of gene-specific oligos based on given gene sets, and can be used for large, complex genomes such as human, mouse, or maize.

Proper citation: Picky (RRID:SCR_010963) Copy   


http://www.matrics.ucla.edu/index.html

Cognitive deficits -- including impairments in areas such as memory, attention, and executive function -- are a major determinant and predictor of long-term disability in schizophrenia. Unfortunately, available antipsychotic medications are relatively ineffective in improving cognition. Scientific discoveries during the past decade suggest that there may be opportunities for developing medications that will be effective for improving cognition in schizophrenia. The NIMH has identified obstacles that are likely to interfere with the development of pharmacological agents for treating cognition in schizophrenia. These include: (1) a lack of a consensus as to how cognition in schizophrenia should be measured; (2) differing opinions as to the pharmacological approaches that are most promising; (3) challenges in clinical trial design; (4) concerns in the pharmaceutical industry regarding the US Food and Drug Administration''s (FDA) approaches to drug approval for this indication; and (5) issues in developing a research infrastructure that can carry out clinical trials of promising drugs. The MATRICS program will bring together representatives of academia, industry, and government in a consensus process for addressing all of these obstacles. Specific goals of the NIMH MATRICS are: * To catalyze regulatory acceptance of cognition in schizophrenia as a target for drug registration. * To promote development of novel compounds to enhance cognition in schizophrenia. * Leverage economic research power of industry to focus on important but neglected clinical targets. * Identify lead compounds and if deemed feasible, support human proof of concept trials for cognition in schizophrenia.

Proper citation: MATRICS - Measurement And Treatment Research to Improve Cognition in Schizophrenia (RRID:SCR_005644) Copy   


  • RRID:SCR_005587

    This resource has 1+ mentions.

http://mesquiteproject.org/packages/chromaseq/

A software package in Mesquite that processes chromatograms, makes contigs, base calls, etc., using in part the programs Phred and Phrap.

Proper citation: Chromaseq (RRID:SCR_005587) Copy   


http://www.patternlabforproteomics.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented July 5, 2018. Gene Ontology Explorer (GOEx) combines data from protein fold changes with GO over-representation statistics to help draw conclusions in proteomic experiments. It is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. A recent hack included in GOEx is to load the sparse matrix index file directly into GOEx, instead of going through the report generation using the AC/T-fold methods. This makes it easy for GOEx to analyze any list of proteins as long as the list follows the index file format (described in manuscript) . Please note that if using this alternative strategy, there will be no protein fold information. Platform: Windows compatible

Proper citation: GOEx - Gene Ontology Explorer (RRID:SCR_005779) Copy   


  • RRID:SCR_005761

    This resource has 1+ mentions.

http://alchemy.sourceforge.net/

ALCHEMY is a genotype calling algorithm for Affymetrix and Illumina products which is not based on clustering methods. Features include explicit handling of reduced heterozygosity due to inbreeding and accurate results with small sample sizes. ALCHEMY is a method for automated calling of diploid genotypes from raw intensity data produced by various high-throughput multiplexed SNP genotyping methods. It has been developed for and tested on Affymetrix GeneChip Arrays, Illumina GoldenGate, and Illumina Infinium based assays. Primary motivations for ALCHEMY''s development was the lack of available genotype calling methods which can perform well in the absence of heterozygous samples (due to panels of inbred lines being genotyped) or provide accurate calls with small sample batches. ALCHEMY differs from other genotype calling methods in that genotype inference is based on a parametric Bayesian model of the raw intensity data rather than a generalized clustering approach and the model incorporates population genetic principles such as Hardy-Weinberg equilibrium adjusted for inbreeding levels. ALCHEMY can simultaneously estimate individual sample inbreeding coefficients from the data and use them to improve statistical inference of diploid genotypes at individual SNPs. The main documentation for ALCHEMY is maintained on the sourceforge-hosted MediaWiki system. Features * Population genetic model based SNP genotype calling * Simultaneous estimation of per-sample inbreeding coefficients, allele frequencies, and genotypes * Bayesian model provides posterior probabilities of genotype correctness as quality measures * Growing number of scripts and supporting programs for validation of genotypes against control data and output reformating needs * Multithreaded program for parallel execution on multi-CPU/core systems * Non-clustering based methods can handle small sample sets for empirical optimization of sample preparation techniques and accurate calling of SNPs missing genotype classes ALCHEMY is written in C and developed on the GNU/Linux platform. It should compile on any current GNU/Linux distribution with the development packages for the GNU Scientific Library (gsl) and other development packages for standard system libraries. It may also compile and run on Mac OS X if gsl is installed.

Proper citation: ALCHEMY (RRID:SCR_005761) Copy   


http://www.nitrc.org/projects/efficient_pt

A Matlab implementation for efficient permutation testing by using matrix completion.

Proper citation: Efficient Permutation Testing (RRID:SCR_014104) Copy   


  • RRID:SCR_014285

http://dx.doi.org/10.5281/zenodo.21157

A graphical source code file used for an automated motion detection and reward system for animal training (see comment for full paper title). It was designed on the LabVIEW programming system. Running the program requires the appropriate LabVIEW runtime software from National Instruments Corporation.

Proper citation: Monkey Motion (RRID:SCR_014285) Copy   


https://www.nitrc.org/projects/gmac_2012/

Open-source software toolbox implemented multivariate spectral Granger Causality Analysis for studying brain connectivity using fMRI data. Available features are: fMRI data importing, network nodes definition, time series preprocessing, multivariate autoregressive modeling, spectral Granger causality indexes estimation, statistical significance assessment using surrogate data, network analysis and visualization of connectivity results. All functions are integrated into a graphical user interface developed in Matlab environment. Dependencies: Matlab, BIOSIG, SPM, MarsBar.

Proper citation: GMAC: A Matlab toolbox for spectral Granger causality analysis of fMRI data (RRID:SCR_009581) Copy   


  • RRID:SCR_002389

    This resource has 1+ mentions.

http://titan.biotec.uiuc.edu/bee/honeybee_project.htm

A database integrating data from the bee brain EST sequencing project with data from sequencing and gene research projects from other organisms, primarily the fruit fly Drosophila melanogaster. The goal of Bee-ESTdb is to provide updated information on the genes of the honey bee, currently using annotation primarily from flies to suggest cellular roles, biological functions, and evolutionary relationships. The site allows searches by sequence ID, EST annotations, Gene Ontology terms, Contig ID and using BLAST. Very nice resource for those interested in comparative genomics of brain. A normalized unidirectional cDNA library was made in the laboratory of Prof. Bento Soares, University of Iowa. The library was subsequently subtracted. Over 20,000 cDNA clones were partially sequenced from the normalized and subtracted libraries at the Keck Center, resulting in 15,311 vector-trimmed, high-quality, sequences with an average read length of 494 bp. and average base-quality of 41. These sequences were assembled into 8966 putatively unique sequences, which were tested for similarity to sequences in the public databases with a variety of BLAST searches. The Clemson University Genomics Institute is the distributor of these public domain cDNA clones. For information on how to purchase an individual clone or the entire collection, please contact www.genome.clemson.edu/orders/ or generobi (at) life.uiuc.edu.

Proper citation: Honey Bee Brain EST Project (RRID:SCR_002389) Copy   


  • RRID:SCR_002303

    This resource has 10+ mentions.

http://cgsc.biology.yale.edu/index.php

The CGSC Collection contains only non-pathogenic BSL-1 laboratory strains, primarily genetic derivatives of Escherichia coli K-12, the laboratory strain widely used in genetic and molecular studies, but a few B strains. The CGSC Database of E. coli genetic information includes genotypes and reference information for the strains in the CGSC collection, the names, synonyms, properties, and map position for genes, gene product information, and information on specific mutations and references to primary literature. The public version of the database includes this information and can be queried directly via this CGSC DB WebServer. The collection includes cultures of wild-type contributed from a number of laboratories and a few thousand derivatives carrying one or up to 29 mutations from among 3500 mutations in (or included in deletions spanning) more than 1300 different loci. Some combinations were constructed particularly for mapping purposes and are still used for teaching and for rapid localization, some for manifestation of a particular phenotype, some strains for transferring a particular region or for complementation analysis. Some plasmids, e.g., the Clarke and Carbon collection, F-primes, a number of toolkit plasmids, and a few classic plasmids are included, but it is not a comprehensive collection of plasmids. Additionally, we have recently acquired most of the strains from the Keio Collection of systematic individual gene knockout (deletion/kan insertion) strains.

Proper citation: CGSC (RRID:SCR_002303) Copy   


http://www.agre.org/index.cfm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. A private repository of clinical and genetic information on families with autism. Genetic and clinical data are obtained from families that have more than one family member diagnosed with an Autism Spectrum Disorder. The biological samples, along with the accompanying clinical data, are made available to AGRE-approved researchers worldwide. As they become available, additional family pedigrees will be posted in the online catalog. Cell lines have been established for the majority of families in this collection and serum/plasma is available on a subset of the subjects until stocks are depleted. The diagnosis of autism has been made using the standard Autism Diagnostic Interview-Revised (ADI-R) algorithm and the Autism Diagnostic Observation Scale (ADOS-G). Detailed birth and medical histories (including basic dysmorphology assessments) on children as well as family and medical information for parents and unaffected siblings, are available for nearly all families. DNA, cell lines, serum, plasma and clinical information are made available to AGRE-approved researchers for analysis.

Proper citation: Autism Genetic Resource Exchange (RRID:SCR_004403) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X