Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 36 results
Snippet view Table view Download
Click the to add this resource to a Collection
  • RRID:SCR_005529

    This resource has 1+ mentions.

http://www.phenologs.org/

Database for identifying orthologous phenotypes (phenologs). Mapping between genotype and phenotype is often non-obvious, complicating prediction of genes underlying specific phenotypes. This problem can be addressed through comparative analyses of phenotypes. We define phenologs based upon overlapping sets of orthologous genes associated with each phenotype. Comparisons of >189,000 human, mouse, yeast, and worm gene-phenotype associations reveal many significant phenologs, including novel non-obvious human disease models. For example, phenologs suggest a yeast model for mammalian angiogenesis defects and an invertebrate model for vertebrate neural tube birth defects. Phenologs thus create a rich framework for comparing mutational phenotypes, identify adaptive reuse of gene systems, and suggest new disease genes. To search for phenologs, go to the basic search page and enter a list of genes in the box provided, using Entrez gene identifiers for mouse/human genes, locus ids for yeast (e.g., YHR200W), or sequence names for worm (e.g., B0205.3). It is expected that this list of genes will all be associated with a particular system, trait, mutational phenotype, or disease. The search will return all identified model organism/human mutational phenotypes that show any overlap with the input set of the genes, ranked according to their hypergeometric probability scores. Clicking on a particular phenolog will result in a list of genes associated with the phenotype, from which potential new candidate genes can identified. Currently known phenotypes in the database are available from the link labeled ''Find phenotypes'', where the associated gene can be submitted as queries, or alternately, can be searched directly from the link provided.

Proper citation: Phenologs (RRID:SCR_005529) Copy   


http://bioinfo.mbi.ucla.edu/ASAP/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. Database to access and mine alternative splicing information coming from genomics and proteomics based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. They developed an automated method for discovering human tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs), which involves classifying human EST libraries according to tissue categories and Bayesian statistical analysis. They use the UniGene clusters of human Expressed Sequence Tags (ESTs) to identify splices. The UniGene EST's are clustered so that a single cluster roughly corresponds to a gene (or at least a part of a gene). A single EST represents a portion of a processed (already spliced) mRNA. A given cluster contains many ESTs, each representing an outcome of a series of splicing events. The ESTs in UniGene contain the different mRNA isoforms transcribed from an alternatively spliced gene. They are not predicting alternative splicing, but locating it based on EST analysis. The discovered splices are further analyzed to determine alternative splicing events. They have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with 2.1 million human mRNA and EST sequences, they mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. After constructing a tissue list of 46 human tissues with 2 million human ESTs, they generated a database of novel human alternative splices that is four times larger than our previous report, and used Bayesian statistics to compare the relative abundance of every pair of alternative splices in these tissues. Using several statistical criteria for tissue specificity, they have identified 667 tissue-specific alternative splicing relationships and analyzed their distribution in human tissues. They have validated our results by comparison with independent studies. This genome-wide analysis of tissue specificity of alternative splicing will provide a useful resource to study the tissue-specific functions of transcripts and the association of tissue-specific variants with human diseases.

Proper citation: ASAP: the Alternative Splicing Annotation Project (RRID:SCR_003415) Copy   


http://www.mitomap.org/

Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.

Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy   


  • RRID:SCR_002793

    This resource has 10+ mentions.

Ratings or validation data are available for this resource

http://www.cognitiveatlas.org/

Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.

Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy   


http://national_databank.mclean.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.

Proper citation: National Brain Databank (RRID:SCR_003606) Copy   


  • RRID:SCR_006131

    This resource has 1+ mentions.

https://www.msu.edu/~brains/brains/human/index.html

A labeled three-dimensional atlas of the human brain created from MRI images. In conjunction are presented anatomically labeled stained sections that correspond to the three-dimensional MRI images. The stained sections are from a different brain than the one which was scanned for the MRI images. Also available the major anatomical features of the human hypothalamus, axial sections stained for cell bodies or for nerve fibers, at six rostro-caudal levels of the human brain stem; images and Quicktime movies. The MRI subject was a 22-year-old adult male. Differing techniques used to study the anatomy of the human brain all have their advantages and disadvantages. Magnetic resonance imaging (MRI) allows for the three-dimensional viewing of the brain and structures, precise spatial relationships and some differentiation between types of tissue, however, the image resolution is somewhat limited. Stained sections, on the other hand, offer excellent resolution and the ability to see individual nuclei (cell stain) or fiber tracts (myelin stain), however, there are often spatial distortions inherent in the staining process. The nomenclature used is from Paxinos G, and Watson C. 1998. The Rat Brain in Stereotaxic Coordinates, 4th ed. Academic Press. San Diego, CA. 256 pp

Proper citation: Human Brain Atlas (RRID:SCR_006131) Copy   


  • RRID:SCR_004830

    This resource has 10+ mentions.

http://humanconnectome.org/connectome/connectomeDB.html

Data management platform that houses all data generated by the Human Connectome Project - image data, clinical evaluations, behavioral data and more. ConnectomeDB stores raw image data, as well as results of analysis and processing pipelines. Using the ConnectomeDB infrastructure, research centers will be also able to manage Connectome-like projects, including data upload and entry, quality control, processing pipelines, and data distribution. ConnectomeDB is designed to be a data-mining tool, that allows users to generate and test hypotheses based on groups of subjects. Using the ConnectomeDB interface, users can easily search, browse and filter large amounts of subject data, and download necessary files for many kinds of analysis. ConnectomeDB is designed to work seamlessly with Connectome Workbench, an interactive, multidimensional visualization platform designed specifically for handling connectivity data. De-identified data within ConnectomeDB is publicly accessible. Access to additional data may be available to qualified research investigators. ConnectomeDB is being hosted on a BlueArc storage platform housed at Washington University through the year 2020. This data platform is based on XNAT, an open-source image informatics software toolkit developed by the NRG at Washington University. ConnectomeDB itself is fully open source.

Proper citation: ConnectomeDB (RRID:SCR_004830) Copy   


  • RRID:SCR_007379

    This resource has 1+ mentions.

http://nsr.bioeng.washington.edu/

Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.

Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy   


  • RRID:SCR_010641

http://brainandsociety.org/the-brain-observatory

Formerly a topical portal studying the brain which collected and imaged 1000 human brains, the Brain Observatory has partnered with the Institute for Brain and Society to build virtual laboratories that will feed directly into the database of images and knowledge created in the context of the Human Brain Library. The Brain Observatory will also host exhibits, conferences, and events aimed at promoting a heightened awareness of brain research and how its results can benefit personal brain fitness and mental health.

Proper citation: Brain Observatory (RRID:SCR_010641) Copy   


http://www.nimh.nih.gov/educational-resources/index.shtml

A portal to educational resources.

Proper citation: NIMH Educational Resources (RRID:SCR_004045) Copy   


  • RRID:SCR_004232

    This resource has 1+ mentions.

http://openconnectomeproject.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.

Proper citation: Open Connectome Project (RRID:SCR_004232) Copy   


  • RRID:SCR_004283

    This resource has 10+ mentions.

http://brainarchitecture.org/

Evolving portal that will provide interactive tools and resources to allow researchers, clinicians, and students to discover, analyze, and visualize what is known about the brain's organization, and what the evidence is for that knowledge. This project has a current experimental focus: creating the first brainwide mesoscopic connectivity diagram in the mouse. Related efforts for the human brain currently focus on literature mining and an Online Brain Atlas Reconciliation Tool. The primary goal of the Brain Architecture Project is to assemble available knowledge about the structure of the nervous system, with an ultimate emphasis on the human CNS. Such information is currently scattered in research articles, textbooks, electronic databases and datasets, and even as samples on laboratory shelves. Pooling the knowledge across these heterogeneous materials - even simply getting to know what we know - is a complex challenge that requires an interdisciplinary approach and the contributions and support of the greater community. Their approach can be divided into 4 major thrusts: * Literature Curation and Text Mining * Computational Analysis * Resource Development * Experimental Efforts

Proper citation: Brain Architecture Project (RRID:SCR_004283) Copy   


http://fantom.gsc.riken.jp/

International collaborative research project and database of annotated mammalian genome. Used to improve estimates of total number of genes and their alternative transcript isoforms in both human and mouse. Consortium to assign functional annotations to full length cDNAs that were collected during Mouse Encyclopedia Project at RIKEN.

Proper citation: Functional Annotation of the Mammalian Genome (RRID:SCR_000788) Copy   


http://www.alz.washington.edu/

A clinical research, neuropathological research and collaborative research database that uses data collected from 29 NIA-funded Alzheimer's Disease Centers (ADCs). The database consists of several datasets, and searches may be done on the entire database or on individual datasets. Any researcher, whether affiliated with an ADC or not, may request a data file for analysis or aggregate data tables. Requested aggregate data tables are produced and returned as soon as the queue allows (usually within 1-3 days depending on the complexity).

Proper citation: National Alzheimer's Coordinating Center (RRID:SCR_007327) Copy   


  • RRID:SCR_013273

    This resource has 100+ mentions.

http://www.fz-juelich.de/ime/spm_anatomy_toolbox

A MATLAB toolbox which uses three dimensional probabilistic cytoarchitechtonic maps to correlate microscopic, anatomic and functional data of the cerebral cortex. Correlating the activation foci identified in functional imaging studies of the human brain with structural (e.g., cytoarchitectonic) information on the activated areas is a major methodological challenge for neuroscience research. We here present a new approach to make use of three-dimensional probabilistic cytoarchitectonic maps, as obtained from the analysis of human post-mortem brains, for correlating microscopical, anatomical and functional imaging data of the cerebral cortex. We introduce a new, MATLAB based toolbox for the SPM2 software package which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies. The toolbox includes the functionality for the construction of summary maps combining probability of several cortical areas by finding the most probable assignment of each voxel to one of these areas. Its main feature is to provide several measures defining the degree of correspondence between architectonic areas and functional foci. The software, together with the presently available probability maps, is available as open source software to the neuroimaging community. This new toolbox provides an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

Proper citation: SPM Anatomy Toolbox (RRID:SCR_013273) Copy   


http://senselab.med.yale.edu/cellpropdb

A repository for data regarding membrane channels, receptor and neurotransmitters that are expressed in specific types of cells. The database is presently focused on neurons but will eventually include other cell types, such as glia, muscle, and gland cells. This resource is intended to: * Serve as a repository for data on gene products expressed in different brain regions * Support research on cellular properties in the nervous system * Provide a gateway for entering data into the cannonical neuron forms in NeuronDB * Identify receptors across neuron types to aid in drug development * Serve as a first step toward a functional genomics of nerve cells * Serve as a teaching aid

Proper citation: Cell Properties Database (RRID:SCR_007285) Copy   


  • RRID:SCR_008846

http://www.nimh.nih.gov/health/publications/index.shtml

Publications put out by the National Institute of Mental Health. Publications are available by topic: Disorders: * Attention Deficit Hyperactivity Disorder (ADHD) * Anxiety Disorders * Autism * Bipolar Disorder * Borderline Personality Disorder * Depression * Eating Disorders * Generalized Anxiety Disorder * Obsessive-Compulsive Disorder (OCD) * Panic Disorder * Post-Traumatic Stress Disorder * Schizophrenia * Social Phobia Populations * Older Adults * Men''s Mental Health * Women''s Mental Health * Children and Adolescents Research * Basic Research * Clinical Research and Trials * Research Funding * Mental Health Services Research Other * Coping with Traumatic Events * Genetics * HIV/AIDS * Imaging * Medications * NIMH * Prevention * Statistics * Suicide Prevention * Treatments

Proper citation: NIMH Publications (RRID:SCR_008846) Copy   


  • RRID:SCR_005594

http://www.nimh.nih.gov/news/media/index.shtml

A provider for videos available from the National Institute of Mental Health (NIMH). Visitors may sort by topic and/or subscribe to RSS feeds.

Proper citation: NIMH Video (RRID:SCR_005594) Copy   


http://www.nimh.nih.gov/about/director/index.shtml

Blog by the NIMH Director, Thomas R. Insel, M.D. Users may sort posts by topic and/or subsribe to the RSS Feed, http://www.nimh.nih.gov/site-info/feed-directors-blog.atom

Proper citation: NIMH Director's Blog (RRID:SCR_008841) Copy   


http://www.mitre.org/news/digest/archives/2002/neuroinformatics.html

This resource''s long-term goal is to develop informatics methodologies and tools that will increase the creativity and productivity of neuroscience investigators, as they work together to use shared human brain mapping data to generate and test ideas far beyond those pursued by the data''s originators. This resource currently has four major projects supporting this goal: * Database tools: The goal of the NeuroServ project is to provide neuroscience researchers with automated information management tools that reduce the effort required to manage, analyze, query, view, and share their imaging data. It currently manages both structural magnetic resonance image (MRI) datasets and diffusion tensor image (DTI) datasets. NeuroServ is fully web-enabled: data entry, query, processing, reporting, and administrative functions are performed by qualified users through a web browser. It can be used as a local laboratory repository, to share data on the web, or to support a large distributed consortium. NeuroServ is based on an industrial-quality query middleware engine MRALD. NeuroServ includes a specialized neuroimaging schema and over 40 custom Java Server Pages supporting data entry, query, and reporting to help manage and explore stored images. NeuroServ is written in Java for platform independence; it also utilizes several open source components * Data sharing: DataQuest is a collaborative forum to facilitate the sharing of neuroimaging data within the neuroscience community. By publishing summaries of existing datasets, DataQuest enables researchers to: # Discover what data is available for collaborative research # Advertise your data to other researchers for potential collaborations # Discover which researchers may have the data you need # Discover which researchers are interested in your data. * Image quality: The approach to assessing the inherent quality of an image is to measure how distorted the image is. Using what are referred to as no-reference or blind metrics, one can measure the degree to which an image is distorted. * Content-based image retrieval: NIRV (NeuroImagery Retrieval & Visualization) is a work environment for advanced querying over imagery. NIRV will have a Java-based front-end for users to issue queries, run processing algorithms, review results, visualize imagery and assess image quality. NIRV interacts with an image repository such as NeuroServ. Users can also register images and will soon be able to filter searches based on image quality.

Proper citation: MITRE Neuroinformatics (RRID:SCR_006508) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X