Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 341 results
Snippet view Table view Download
Click the to add this resource to a Collection

http://www.matrics.ucla.edu/index.html

Cognitive deficits -- including impairments in areas such as memory, attention, and executive function -- are a major determinant and predictor of long-term disability in schizophrenia. Unfortunately, available antipsychotic medications are relatively ineffective in improving cognition. Scientific discoveries during the past decade suggest that there may be opportunities for developing medications that will be effective for improving cognition in schizophrenia. The NIMH has identified obstacles that are likely to interfere with the development of pharmacological agents for treating cognition in schizophrenia. These include: (1) a lack of a consensus as to how cognition in schizophrenia should be measured; (2) differing opinions as to the pharmacological approaches that are most promising; (3) challenges in clinical trial design; (4) concerns in the pharmaceutical industry regarding the US Food and Drug Administration''s (FDA) approaches to drug approval for this indication; and (5) issues in developing a research infrastructure that can carry out clinical trials of promising drugs. The MATRICS program will bring together representatives of academia, industry, and government in a consensus process for addressing all of these obstacles. Specific goals of the NIMH MATRICS are: * To catalyze regulatory acceptance of cognition in schizophrenia as a target for drug registration. * To promote development of novel compounds to enhance cognition in schizophrenia. * Leverage economic research power of industry to focus on important but neglected clinical targets. * Identify lead compounds and if deemed feasible, support human proof of concept trials for cognition in schizophrenia.

Proper citation: MATRICS - Measurement And Treatment Research to Improve Cognition in Schizophrenia (RRID:SCR_005644) Copy   


http://www.patternlabforproteomics.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented July 5, 2018. Gene Ontology Explorer (GOEx) combines data from protein fold changes with GO over-representation statistics to help draw conclusions in proteomic experiments. It is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. A recent hack included in GOEx is to load the sparse matrix index file directly into GOEx, instead of going through the report generation using the AC/T-fold methods. This makes it easy for GOEx to analyze any list of proteins as long as the list follows the index file format (described in manuscript) . Please note that if using this alternative strategy, there will be no protein fold information. Platform: Windows compatible

Proper citation: GOEx - Gene Ontology Explorer (RRID:SCR_005779) Copy   


https://code.google.com/p/proteomecommons-tranche/

A distributed file storage system that you can upload files to and download files from. All files uploaded to the repository are replicated several times to protect against their accidental loss. Files uploaded to the repository can be of any size, can be of any file type, and can be encrypted with a passphrase of your choosing. The Proteome Commons Tranche repository is the first instance of a Tranche repository. Tranche, was created so that anybody can take it and make their own Tranche repository. This is the first implementation of the Tranche software, and is useful as a test bed for the software. This repository relies on educational institutions to provide the hardware and facilities for Tranche servers. While we maintain a set of servers, the continued growth of this public resource will rely on the generosity of the institutions that use the repository most.

Proper citation: Proteome Commons Tranche repository (RRID:SCR_003441) Copy   


  • RRID:SCR_002518

    This resource has 100+ mentions.

http://www.nitrc.org/projects/penncnv

A free software tool for Copy Number Variation (CNV) detection from SNP genotyping arrays. Currently it can handle signal intensity data from Illumina and Affymetrix arrays. With appropriate preparation of file format, it can also handle other types of SNP arrays and oligonucleotide arrays. PennCNV implements a hidden Markov model (HMM) that integrates multiple sources of information to infer CNV calls for individual genotyped samples. It differs form segmentation-based algorithm in that it considered SNP allelic ratio distribution as well as other factors, in addition to signal intensity alone. In addition, PennCNV can optionally utilize family information to generate family-based CNV calls by several different algorithms. Furthermore, PennCNV can generate CNV calls given a specific set of candidate CNV regions, through a validation-calling algorithm.

Proper citation: PennCNV (RRID:SCR_002518) Copy   


  • RRID:SCR_001496

    This resource has 1+ mentions.

http://www.bari2d.org/

A multicenter randomized clinical trial that aims to determine the best therapies for people with type 2 diabetes and moderately severe cardiovascular disease. 2368 participants were randomized at 49 sites in 6 countries. All subjects were given intensive medical therapy to control cholesterol and blood pressure and given counseling, if needed, to quit smoking and to lose weight. Beyond that, they compared whether prompt revascularization, either bypass surgery or angioplasty, e.g. stents, was more effective than medical therapy alone. At the same time, they also looked at which of two diabetes treatment strategies resulted in better outcomes����??insulin-providing versus insulin-sensitizing - that is, increasing the amount of insulin or making the insulin work better. Only patients with known type 2 diabetes and heart disease that could be treated appropriately with a revascularization OR medical therapy alone were eligible for the trial. Patients entered the study between January 2001 ����?? March 2005 and were followed for an average of five years. When a patient entered the study, physicians first decided whether that patient should receive stenting or bypass surgery. The patient then received their randomization assignment. All patients were treated in BARI 2D for both their diabetes and heart disease, as well as other risk factors that might effect those diseases, regardless of which group they were in. Diabetes-specific complications including retinopathy, nephropathy, neuropathy, and peripheral vascular disease were monitored regularly. Tests, blood samples, urine samples, and treatment cost data were obtained periodically through the trial and examined by experts at 7 central laboratories and other research partners. Experts on risk factors routinely oversaw treatments of all patients at 4 central management centers. A panel of independent experts reviewed data every six months to make sure that all patients were receiving safe care.

Proper citation: BARI 2D (RRID:SCR_001496) Copy   


http://www.ncrr.nih.gov/clinical_research_resources/resource_directory/general_clinical_research_centers/program_information/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Through the General Clinical Research Centers (GCRC) program, NCRR funds a national network that provides settings for medical investigators to conduct safe, controlled, state-of-the-art, in-patient and out-patient studies of both children and adults. GCRCs also provide infrastructure and resources that support several career development opportunities.

Proper citation: General Clinical Research Centers Program (RRID:SCR_002847) Copy   


http://nimh-repository.rti.org/

A program that synthesizes, purifies, and distributes otherwise unavailable essential compounds to stimulate basic and clinical research in psychopharmacology relevant to mental health in areas such as the molecular pharmacology and signaling of CNS receptors, longitudinal studies to evaluate the molecular, biochemical, and behavioral actions of psychoactive compounds, and functional brain imaging in both primates and humans. WHAT IS AVAILABLE: * Ligands for CNS receptors, radiolabeled compounds for autoradiography and neuroimaging, biochemical markers, drug analogs and metabolites, and reference standards * Synthesis (including GMP) of promising compounds for mental health research, including preclinical toxicology and safety studies, especially compounds for PET neuroimaging * A listing of currently available NIMH CSDSP compounds is available online at www.nimh-repository.rti.org. RTI International scientists can provide investigators with technical assistance and additional information about the compounds on request. Data sheets containing purity, storage, and handling information are supplied with all NIMH CSDSP compounds. WHO IS ELIGIBLE: Investigators involved in basic or clinical research relevant to mental health are eligible to submit requests. To learn more about current NIMH research areas, please visit the NIMH website at www.nimh.nih.gov. NIMH CSDSP compounds are free to qualified academic investigators, but payment may be required from nonacademic requestors. Investigators interested in obtaining radiolabeled compounds but uncertain about what type of label or specific activity would work best for them may obtain help by communicating with the technical contacts listed on the website.

Proper citation: NIMH Chemical Synthesis and Drug Supply Program (RRID:SCR_004921) Copy   


http://nt-salkoff.wustl.edu/portal/hgxpp001.aspx?2

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Supplies potassium channel cDNA clones in vectors suitable for functional expression and stocks of gene knockout strains. Supporting this resource base are studies showing the basic biophysical properties of the channels, studies showing the phenotypes of mutants, and information on the cell-type expression patterns of potassium channels. Studies of potassium channel cell-type expression patterns and functional properties; studies of behavioral phenotypes; generation of knockout mutants. Full-length cDNAs encoding C. elegans potassium channels in a vector suitable for functional expression in Xenopus oocytes and mammalian cell lines are available on request. Information is also provided describing the cell-type expression patterns and basic biophysical properties of potassium channels. And data on behavioral phenotypes are also available. C. elegans strains carrying knockouts of potassium channels are also generated and deposited at the C. elegans stock center at the University of Minnesota.

Proper citation: A Comprehensive Resource Base for C. elegans K+ Channels (RRID:SCR_008360) Copy   


  • RRID:SCR_006636

http://ligand-expo.rutgers.edu/

An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.

Proper citation: Ligand Expo (RRID:SCR_006636) Copy   


  • RRID:SCR_001922

    This resource has 50+ mentions.

http://www.loni.usc.edu/

Biomedical technology resource center specializing in novel approaches and tools for neuroimaging. It develops novel strategies to investigate brain structure and function in their full multidimensional complexity. There is a rapidly growing need for brain models comprehensive enough to represent brain structure and function as they change across time in large populations, in different disease states, across imaging modalities, across age and sex, and even across species. International networks of collaborators are provided with a diverse array of tools to create, analyze, visualize, and interact with models of the brain. A major focus of these collaborations is to develop four-dimensional brain models that track and analyze complex patterns of dynamically changing brain structure in development and disease, expanding investigations of brain structure-function relations to four dimensions.

Proper citation: Laboratory of Neuro Imaging (RRID:SCR_001922) Copy   


http://www.nitrc.org/projects/nusdast

A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.

Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy   


http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/JHUtemplate_newuser.html

DTI white matter atlases with different data sources and different image processing. These include single-subject, group-averaged, B0 correction, processed atlases (White Matter Parcellation Map, Tract-probability maps, Conceptual difference between the WMPM and tract-probability maps), and linear or non-linear transformation for automated white matter segmentation. # Adam single-subject white matter atlas (old version): These are electronic versions of atlases published in Wakana et al, Radiology, 230, 77-87 (2004) and MRI Atlas of Human White Matter, Elsevier. ## Original Adam Atlas: 256 x 256 x 55 (FOV = 246 x 246 mm / 2.2 mm slices) (The original matrix is 96x96x55 (2.2 mm isotropic) which is zerofilled to 256 x 256 ## Re-sliced Adam Atlas: 246 x 246 x 121 (1 mm isotropic) ## Talairach Adam: 246 x 246 x 121 (1 mm isotropic) # New Eve single-subject white matter atlas: The new version of the single-subject white matter atlas with comprehensive white matter parcellation. ## MNI coordinate: 181 x 217 x 181 (1 mm isotropic) ## Talairach coordinate: 181 x 217 x 181 (1 mm isotropic) # Group-averaged atlases: This atlas was created from their normal DTI database (n = 28). The template was MNI-ICBM-152 and the data from the normal subjects were normalized by affine transformation. Image dimensions are 181x217x181, 1 mm isotropic. There are two types of maps. The first one is the averaged tensor map and the second one is probabilistic maps of 11 white matter tracts reconstructed by FACT. # ICBM Group-averaged atlases: This atlas was created from ICBM database. All templates follow Radiology convention. You may need to flip right and left when you use image registration software that follows the Neurology convention.

Proper citation: DTI White Matter Atlas (RRID:SCR_005279) Copy   


  • RRID:SCR_006288

    This resource has 1+ mentions.

http://www.civm.duhs.duke.edu/neuro2012ratatlas/

Multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). The atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies. To access the atlas, click view supplementary materials in CIVMSpace at the bottom of the following webpage.

Proper citation: Adult Wistar Rat Atlas (RRID:SCR_006288) Copy   


  • RRID:SCR_013742

    This resource has 50+ mentions.

http://hbatlas.org

A data repository containing transcriptome and associated metadata for the developing and adult human brain. It provides genome-wide, exon-level transcriptome data from both sexes and multiple ethnicities.

Proper citation: Human Brain Transcriptome (RRID:SCR_013742) Copy   


  • RRID:SCR_002439

    This resource has 10+ mentions.

http://mindboggle.info/data.html

Complete set of free, publicly accessible, downloadable atlases, templates, and individual manually labeled brain image data, the largest collection of publicly available, manually labeled human brains in the world! http://journal.frontiersin.org/article/10.3389/fnins.2012.00171/full

Proper citation: Mindboggle-101 atlases (RRID:SCR_002439) Copy   


  • RRID:SCR_002569

    This resource has 1+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases

3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.

Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy   


http://www.epmba.org/

The Electronic Prenatal Mouse Brain Atlas, EPMBA, at present consists of two sets of annotated images of coronal sections from Gestational Day (GD) 12 heads and GD 16 brains of C57BL/6J mice. Ten micron thick sections were stained with hematoxylin and eosin. Images were prepared at various resolutions for annotations and for high resolution presentation. A subset of sections were annotated and linked to anatomical terms. Additionally, horizontal sections of a GD 12 head were aligned and re-assembled into a 3D volume for digital sectioning in arbitrarily oblique planes. These images were captured using a Nikon E800 stereomicroscope with a 10X objective. The resolution is 1.35 pixels/micrometer. The PC program used to grab the images, Microbrightfield's Neurolucida (version 6), stitched together a mosaic of between 10 and 50 high-res images for each tissue slice, while the user focused the scope for each mosaic tile. Since the nature of optic lenses is to focus on one central point, it was difficult to obtain a uniformly-focused field of vision; as such, small areas of these images are blurred. Images were then transferred to a Macintosh and processed in Adobe Photoshop (version 7). Color levels were adjusted for maximum clarity of the tissue, and areas surrounding the tissue were cleared of artifacts. Each image is approximately 3350 pixels wide by 2650 pixels high. A scale bar with a length of 1350 pixels/mm is visible in the lower right-hand corner of each image. The annotations have been completed for the Atlas of Developing Mouse Brain Gestational (Embryonic) Day 12 (7/5/07) as well as the Atlas of Developing Mouse Brain Embryonic Day 16 (4/26/07). The 3D EPMBA data set has been mounted on a NeuroTerrain Atlas Server (NtAS). (6/27/07).

Proper citation: EPMBA.ORG: Electronic Prenatal Mouse Brain Atlas (RRID:SCR_001882) Copy   


  • RRID:SCR_001551

    This resource has 1+ mentions.

http://proteomics.ucsd.edu/Software/NeuroPedia/index.html

A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.

Proper citation: NeuroPedia (RRID:SCR_001551) Copy   


  • RRID:SCR_010668

    This resource has 50+ mentions.

http://uberon.org

An integrated cross-species anatomy ontology representing a variety of entities classified according to traditional anatomical criteria such as structure, function and developmental lineage. The ontology includes comprehensive relationships to taxon-specific anatomical ontologies, allowing integration of functional, phenotype and expression data. Uberon consists of over 10000 classes (March 2014) representing structures that are shared across a variety of metazoans. The majority of these classes are chordate specific, and there is large bias towards model organisms and human.

Proper citation: UBERON (RRID:SCR_010668) Copy   


  • RRID:SCR_010641

http://brainandsociety.org/the-brain-observatory

Formerly a topical portal studying the brain which collected and imaged 1000 human brains, the Brain Observatory has partnered with the Institute for Brain and Society to build virtual laboratories that will feed directly into the database of images and knowledge created in the context of the Human Brain Library. The Brain Observatory will also host exhibits, conferences, and events aimed at promoting a heightened awareness of brain research and how its results can benefit personal brain fitness and mental health.

Proper citation: Brain Observatory (RRID:SCR_010641) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X