Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 out of 8 results
Snippet view Table view Download
Click the to add this resource to a Collection

https://www.wtccc.org.uk/

Consortium of 50 research groups across the UK to harness the power of newly-available genotyping technologies to improve our understanding of the aetiological basis of several major causes of global disease. The consortium has gathered genotype data for up to 500,000 sites of genome sequence variation (single nucleotide polymorphisms or SNPs) in samples ascertained for the disease phenotypes. Analysis of the genome-wide association data generated has lead to the identification of many SNPs and genes showing evidence of association with disease susceptibility, some of which will be followed up in future studies. In addition, the Consortium has gained important insights into the technical, analytical, methodological and biological aspects of genome-wide association analysis. The core of the study comprised an analysis of 2,000 samples from each of seven diseases (type 1 diabetes, type 2 diabetes, coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis and Crohn's disease). For each disease, the case samples have been ascertained from sites widely distributed across Great Britain, allowing us to obtain considerable efficiencies by comparing each of these case populations to a common set of 3,000 nationally-ascertained controls also from England, Scotland and Wales. These controls come from two sources: 1,500 are representative samples from the 1958 British Birth Cohort and 1,500 are blood donors recruited by the three national UK Blood Services. One of the questions that the WTCCC study has addressed relates to the relative merits of these alternative strategies for the generation of representative population cohorts. Genotyping for this main Case Control study was conducted by Affymetrix using the (commercial) Affymetrix 500K chip. As part of this study a total of 17,000 samples were typed for 500,000 SNPs. There are two additional components to the study. First, the WTCCC award is part-funding a study of host resistance to infectious diseases in African populations. The same approach has been used to type 2,000 cases of tuberculosis (TB) and 2,000 cases of malaria, as well as 2,000 shared controls. As well as addressing diseases of major global significance, and extending WTCCC coverage into the area of infectious disease, the inclusion of samples of African origin has obvious benefits with respect to methodological aspects of genome-wide association analysis. Second, the WTCCC has, for four additional diseases (autoimmune thyroid disease, breast cancer, ankylosing spondylitis, multiple sclerosis), completed an analysis of 15,000 SNPs designed to represent a large proportion of the known non-synonymous coding SNPs across the genome. This analysis has been performed at the WTSI using a custom Infinium chip (Illumina). Data release The genotypic data of the control samples (1958 British Birth Cohort and UK Blood Service) and from seven diseases analyzed in the main study are now available to qualified researchers. Summary genotype statistics for these collections are available directly from the website. Access to the individual-level genotype data and summary genotype statistics is by application to the Consortium Data Access Committee (CDAC) and approval subject to a Data Access Agreement. WTCCC2: A further round of GWA studies were funded in April 2008. These include 15 WTCCC-collaborative studies and 12 independent studies be supported totaling approximately 120,000 samples. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC2 will perform genome-wide association studies in 13 disease conditions: Ankylosing spondylitis, Barrett's oesophagus and oesophageal adenocarcinoma, glaucoma, ischaemic stroke, multiple sclerosis, pre-eclampsia, Parkinson's disease, psychosis endophenotypes, psoriasis, schizophrenia, ulcerative colitis and visceral leishmaniasis. WTCCC2 will also investigate the genetics of reading and mathematics abilities in children and the pharmacogenomics of statin response. Over 60,000 samples will be analyzed using either the Affymetrix v6.0 chip or the Illumina 660K chip. The WTCCC2 will also genotype 3,000 controls each from the 1958 British Birth cohort and the UK Blood Service control group, and the 6,000 controls will be genotyped on both the Affymetrix v6.0 and Illumina 1.2M chips. WTCCC3: The Wellcome Trust has provided support for a further round of GWA studies in January 2009. These include 5 WTCCC-collaborative studies to be carried out in WTCCC3 and 5 independent studies, across a range of diseases. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC3 will perform genome-wide association studies in the following 4 disease conditions: primary biliary cirrhosis, anorexia nervosa, pre-eclampsia in UK subjects, and the interactions between donor and recipient DNA related to early and late renal transplant dysfunction. The WTCCC3 will also carry out a pilot in a study of the genetics of host control of HIV-1 infection. Over 40,000 samples will be analyzed using the Illumina 660K chip. The WTCCC3 will utilize the 6,000 control genotypes generated by the WTCCC2.

Proper citation: Wellcome Trust Case Control Consortium (RRID:SCR_001973) Copy   


https://www.t1dgc.org/

Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.

Proper citation: Type 1 Diabetes Genetics Consortium (RRID:SCR_001557) Copy   


  • RRID:SCR_001508

    This resource has 10+ mentions.

http://www.diabetestrialnet.org/

International network of researchers who are exploring ways to prevent, delay and reverse the progression of type 1 diabetes. It is conducting clinical trials with researchers from 18 Clinical Centers in the United States, Canada, Finland, United Kingdom, Italy, Germany, Australia and New Zealand. In addition, more than 150 medical centers and physician offices are participating in the TrialNet network. Studies are available for people newly diagnosed with type 1 diabetes, as well as for relatives of people with type 1 diabetes who are at greater risk of developing the disease. This NIH-sponsored clinical trials network conducts studies designed to evaluate new approaches to prevent or ameliorate type 1 diabetes specifically by interdicting the type 1 diabetes disease process. These include interventions designed to decrease beta-cell destruction and/or enhance beta-cell survival. Studies are conducted in non-diabetic persons at risk of type 1 diabetes in an effort to delay the development of type 1 diabetes as a clinical disease; or (if initiated prior to appearance of autoimmunity) in an effort to delay the appearance of autoimmunity; or in individuals with type 1 diabetes who are either newly diagnosed or have evidence of sustained beta cell function. Studies include long-term follow-up of subjects developing type 1 diabetes. The TrialNet network also supports natural history and genetics studies in populations screened for or enrolled in studies conducted by the TrialNet study group. In addition, TrialNet will evaluate methodologies that enhance the conduct of clinical trials interdicting the type 1 diabetes disease process.

Proper citation: Type 1 Diabetes TrialNet (RRID:SCR_001508) Copy   


http://www2.niddk.nih.gov/Research/Resources/ObesityResources.htm

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 23, 2017. This website contains resources for obesity researchers including: Obesity Databases, Registries and Information; Obesity Multicenter Clinical Research; Obesity Basic Research Networks; Obesity Reagents; Obesity Services; Obesity Standardization Programs; Obesity Tissues, Cells, Animals; Obesity Useful Tools.

Proper citation: NIDDK- National Institute of Diabetes and Digestive and Kidney Diseases Obesity Resources (RRID:SCR_003074) Copy   


http://www2.bsc.gwu.edu/bsc/oneproj.php?pkey=28

Collect, store, and distribute genetic samples from cases and controls of type 1 diabetes and diabetic nephropathy for investigator-driven research into the genetic basis of diabetic nephropathy. As the risk of kidney complications in type 1 diabetes appears to have a considerable genetic component, this study assembled a large data resource for researchers attempting to identify causative genetic variants. The types of data collected allowed traditional case-control testing, a rapid and often powerful approach, and family-based analysis, a robust approach that is not influenced by population substructure. To identify genes that are involved in diabetic nephropathy, a large number of individuals with type 1 diabetes were screened to identify two subsets, one with clear-cut kidney disease and another with normal renal status despite long-term diabetes. Those who met additional entry criteria and consented to participate were enrolled. When possible, both parents also were enrolled to form family trios. As of November 2005, GoKinD included 3075 participants who comprise 671 case singletons, 623 control singletons, 272 case trios, and 323 control trios. Interested investigators may request the DNA collection and corresponding clinical data for GoKinD participants. Participating scientists will have access to three data sets, each with distinct advantages. The set of 1294 singletons has adequate power to detect a wide range of genetic effects, even those of modest size. The set of case trios, which has adequate power to detect effects of moderate size, is not susceptible to false-positive results because of population substructure. The set of control trios is critical for excluding certain false-positive results that can occur in case trios and may be particularly useful for testing gene-environment interactions. Integration of the evidence from these three components into a single, unified analysis presents a challenge. This overview of the GoKinD study examines in detail the power of each study component and discusses analytic challenges that investigators will face in using this resource. Half of the samples were collected at the Joslin Diabetes Center and the other half were collected from around the country by researchers at The George Washington University. DNA samples were processed by scientists at the University of Minnesota and stored at the U.S. Centers for Disease Control and Prevention. Stored samples were available to the research community through a mechanism that has been determined by JDF. Clinical characteristics of patients, which are stored in a central database, are also made available to participating scientists. A similar collection is being carried out in the United Kingdom. This data resource allows researchers to test hypotheses that might explain why diabetic kidney disease clusters in families. This resource also is suitable for studying other complications and type 1 diabetes itself. For example, a total of 1,110 diabetes case trios was available at the end of three years.)

Proper citation: Genetics of Kidneys in Diabetes (RRID:SCR_000133) Copy   


  • RRID:SCR_006212

https://www.braintest.org/brain_test/BrainTest

A portal of online studies that encourage community participation to tackle the most challenging problems in neuropsychiatry, including attention-deficit / hyperactivity disorder, schizophrenia, and bipolar disorder. Our approach is to engage the community and try to recruit tens of thousands of people to spend an hour of their time on our site. You folks will provide data in both brain tests and questionnaires, as well as DNA, and in return, we will provide some information about your brain and behavior. You will also be entered to win amazon.com gift cards. While large collaborative efforts were made in genetics in order to discover the secrets of the human genome, there are still many mysteries about the behaviors that are seen in complex neuropsychiatric syndromes and the underlying biology that gives rise to these behaviors. We know that it will require studying tens of thousands of people to begin to answer these questions. Having you, the public, as a research partner is the only way to achieve that kind of investment. This site will try to reach that goal, by combining high-throughput behavioral assessment using questionnaires and game-like cognitive tests. You provide the data and then we will provide information and feedback about why you should help us achieve our goals and how it benefits everyone in the world. We believe that through this online study, we can better understand memory and attention behaviors in the general population and their genetic basis, which will in turn allow us to better characterize how these behaviors go awry in people who suffer from mental illness. In the end, we hope this will provide better, more personalized treatment options, and ultimately prevention of these widespread and extremely debilitating brain diseases. We will use the data we collect to try to identify the genetic basis for memory and impulse control, for example. If we can achieve this goal, maybe we can then do more targeted research to understand how the biology goes awry in people who have problems with cognition, including memory and impulse control, like those diagnosed with ADHD, Schizophrenia, Bipolar Disorder, and Autism Spectrum Disorders. By participating in our research, you can learn about mental illness and health and help researchers tackle these complex problems. We can''t do it without your help.

Proper citation: Brain Test (RRID:SCR_006212) Copy   


http://www.ndriresource.org/NDRI_Initiatives/HBDI/36/

Database of medical history and genealogical data on over 6700 families who are affected by type 1 diabetes and a repository of DNA and immortalized cell lines collected from 500 families. This database and repository was originally created to help researchers uncover the genetic causes of type 1 diabetes but today, it is also used by researchers who study type 2 diabetes, diabetic complications, autoimmune diseases, kidney disease, and other disorders. The following resources and services are available to researchers through HBDI: * International Type 1 Diabetes Database: This database includes more than 6700 families with diabetes, related complications and other genetic diseases. There are extensive genealogical and medical histories for more than 90,000 individuals. NDRI conducts searches of the database for approved research requests. * HBDI Catalog: The catalog contains 503 family pedigrees with associated cell lines, DNA, and serum for research. Also available are HLA-typing and auto-antibody test results for diabetes families in the catalog. * HBDI Repository: The HBDI repository contains cell lines, DNA, and HLA typing information from 480 families, and frozen buffy coats from 23 families, all with Type 1 diabetes. They have recently expanded the repository to include specimens from individuals with rare diseases. * Customized Collections: NDRI will collect data from patients and physicians, conduct phone interviews and collect blood and other specimens for research on request.

Proper citation: Human Biological Data Interchange (RRID:SCR_004591) Copy   


  • RRID:SCR_005923

http://ki.se/meb/star

Large, ongoing, multifactorial study based on nation-wide ascertainment of patients with schizophrenia and bipolar disorder through the Swedish Twin Registry to include both neuroimaging data, neurocognitive function, molecular genetic data and early adverse environmental factors in the same model in a genetic sensitive design. Swedish schizophrenia research will benefit from this large study database of in total 240 affected and healthy twin pairs collected over a 5 year period. The specific aims are: * To elucidate neural endophenotypes for schizophrenia and bipolar disorder and to clarify the extent of overlap in these features between the two syndromes. * To investigate candidate genes and genomic regions for linkage and association with neural endophenotypes for schizophrenia and bipolar disease. * To determine the contributions of adverse prenatal and perinatal conditions to neural changes associated with schizophrenia and bipolar disease. Types of samples * EDTA whole blood * DNA * RNA Number of sample donors: 251 (June 2010)

Proper citation: KI Biobank - STAR (RRID:SCR_005923) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X