Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Deaggregation of mutant Plasmodium yoelii de-ubiquitinase UBP1 alters MDR1 localization to confer multidrug resistance.

Nature communications | 2024

Mutations in a Plasmodium de-ubiquitinase UBP1 have been linked to antimalarial drug resistance. However, the UBP1-mediated drug-resistant mechanism remains unknown. Through drug selection, genetic mapping, allelic exchange, and functional characterization, here we show that simultaneous mutations of two amino acids (I1560N and P2874T) in the Plasmodium yoelii UBP1 can mediate high-level resistance to mefloquine, lumefantrine, and piperaquine. Mechanistically, the double mutations are shown to impair UBP1 cytoplasmic aggregation and de-ubiquitinating activity, leading to increased ubiquitination levels and altered protein localization, from the parasite digestive vacuole to the plasma membrane, of the P. yoelii multidrug resistance transporter 1 (MDR1). The MDR1 on the plasma membrane enhances the efflux of substrates/drugs out of the parasite cytoplasm to confer multidrug resistance, which can be reversed by inhibition of MDR1 transport. This study reveals a previously unknown drug-resistant mechanism mediated by UBP1 through altered MDR1 localization and substrate transport direction in a mouse model, providing a new malaria treatment strategy.

Pubmed ID: 38413566 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: National Natural Science Foundation of China (National Science Foundation of China),
    Id: 82072302

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SAMTOOLS (tool)

RRID:SCR_002105

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

View all literature mentions

Illumina (tool)

RRID:SCR_010233

American company incorporated that develops, manufactures and markets integrated systems for the analysis of genetic variation and biological function. Provides a line of products and services that serve the sequencing, genotyping and gene expression and proteomics markets. Its headquarters are located in San Diego, California.

View all literature mentions

PlasmoDB (tool)

RRID:SCR_013331

Functional genomic database for malaria parasites. Database for Plasmodium spp. Provides resource for data analysis and visualization in gene-by-gene or genome-wide scale. PlasmoDB 5.5 contains annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution data. Data can be queried by selecting from query grid or drop down menus. Results can be combined with each other on query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.Key community database for malaria researchers, intersecting many types of laboratory and computational data, aggregated by gene.

View all literature mentions

SWISS-MODEL (tool)

RRID:SCR_018123

Software tool as fully automated protein structure homology modeling server, accessible via ExPASy web server, or from program DeepView Swiss Pdb-Viewer. Structural bioinformatics web-server dedicated to homology modeling of 3D protein structures. Used to make protein modelling accessible to all biochemists and molecular biologists.

View all literature mentions

PONDR (tool)

RRID:SCR_023691

Web tool to predict order and disorder from amino acid sequence. Used to predict of natural disordered regions in proteins.

View all literature mentions