Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Alpha phase-coding supports feature binding during working memory maintenance.

bioRxiv : the preprint server for biology | 2024

Working memory (WM) is the ability to retain and manipulate information in mind, which allows mnemonic representations to flexibly guide behavior. Successful WM requires that objects' individual features are bound into cohesive representations, however the mechanisms supporting feature binding remain unclear. Binding errors (or swaps) provide a window into the intrinsic limits in capacity of WM. We tested the hypothesis that binding in WM is accomplished via neural phase synchrony and swaps result from its perturbations. Using magnetoencephalography data collected from human subjects, in a task designed to induce swaps, we showed that swaps are characterized by reduced phase-locked oscillatory activity during memory retention. We found that this reduction arises from increased phase-coding variability in the alpha-band, over a distributed network of sensorimotor areas. Our findings support the notion that feature binding in WM is accomplished through phase-coding dynamics that emerge from the competition between different memories.

Pubmed ID: 38328154 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: R01 MH063901

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FieldTrip (tool)

RRID:SCR_004849

Software tool for analysis of MEG, EEG, and other electrophysiological data. Used by experimental neuroscientists.

View all literature mentions