Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Multifactorial analysis of terminator performance on heterologous gene expression in Physcomitrella.

Plant cell reports | 2024

Characterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins. In particular, the good manufacturing practice (GMP)-compliant moss Physcomitrella (Physcomitrium patens) has outstanding features, such as excellent genetic amenability, reproducible bioreactor cultivation, and humanized protein glycosylation patterns. In this study, we selected and characterized novel terminators for their effects on heterologous gene expression. The Physcomitrella genome contains 53,346 unique 3'UTRs (untranslated regions) of which 7964 transcripts contain at least one intron. Over 91% of 3'UTRs exhibit more than one polyadenylation site, indicating the prevalence of alternative polyadenylation in Physcomitrella. Out of all 3'UTRs, 14 terminator candidates were selected and characterized via transient Dual-Luciferase assays, yielding a collection of endogenous terminators performing equally high as established heterologous terminators CaMV35S, AtHSP90, and NOS. High performing candidates were selected for testing as double terminators which impact reporter levels, dependent on terminator identity and positioning. Testing of 3'UTRs among the different promoters NOS, CaMV35S, and PpActin5 showed an increase of more than 1000-fold between promoters PpActin5 and NOS, whereas terminators increased reporter levels by less than tenfold, demonstrating the stronger effect promoters play as compared to terminators. Among selected terminator attributes, the number of polyadenylation sites as well as polyadenylation signals were found to influence terminator performance the most. Our results improve the biotechnology platform Physcomitrella and further our understanding of how terminators influence gene expression in plants in general.

Pubmed ID: 38246952 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: HORIZON EUROPE Marie Sklodowska-Curie Actions,
    Id: 765115
  • Agency: Deutsche Forschungsgemeinschaft,
    Id: EXC-2189

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Phytozome (tool)

RRID:SCR_006507

A comparative platform for green plant genomics. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology / paralogy relationships as well as clade specific genes and gene expansions. As of release v9.1, Phytozome provides access to forty-one sequenced and annotated green plant genomes which have been clustered into gene families at 20 evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable.

View all literature mentions

Promega (tool)

RRID:SCR_006724

An Antibody supplier

View all literature mentions

psRNATarget (tool)

RRID:SCR_013321

A plant small RNA target analysis server which features two important analysis functions: 1) reverse complementary matching between miRNA and target transcript using a proven scoring schema, and 2) target site accessibility evaluation by calculating unpaired energy (UPE) required to ?open? secondary structure around miRNA?s target site on mRNA. PsRNATarget incorporates recent discoveries in plant miRNA target recognition, e.g. it distinguishes translational and post-transcriptional inhibition, and it reports the number of miRNA/target site pairs that may affect miRNA binding activity to target transcript. PsRNATarget is designed for high-throughput analysis of next-generation data with an efficient distributed computing back-end pipeline that runs on a Linux cluster. The server front-end integrates three simplified user-friendly interfaces to accept user-submitted or preloaded miRNAs and transcript sequences; and outputs a comprehensive list of miRNA / target pairs along with the online tools for batch downloading, key word searching and results sorting.

View all literature mentions

Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions

Power Analysis and Sample Size software (tool)

RRID:SCR_019099

Sample size software for clinical trial, pharmaceutical, and other medical research where sample size calculation or evaluation is needed. Provides sample size tools for statistical test and confidence interval scenarios. Each tool has been validated with published articles and texts.

View all literature mentions