Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

NTRK2 expression in gastrointestinal stromal tumors with a special emphasis on the clinicopathological and prognostic impacts.

Scientific reports | 2024

Gastrointestinal stromal tumors (GISTs) are typically characterized by activating mutations of the KIT proto-oncogene receptor tyrosine kinase (KIT) or platelet-derived growth factor receptor alpha (PDGFRA). Recently, the neurotrophic tyrosine receptor kinase (NTRK) fusion was reported in a small subset of wild-type GIST. We examined trk IHC and NTRK gene expressions in GIST. Pan-trk immunohistochemistry (IHC) was positive in 25 (all 16 duodenal and 9 out of 16 small intestinal GISTs) of 139 cases, and all pan-trk positive cases showed diffuse and strong expression of c-kit. Interestingly, all of these cases showed only trkB but not trkA/trkC expression. Cap analysis of gene expression (CAGE) analysis identified increased number of genes whose promoters were activated in pan-trk/trkB positive GISTs. Imbalanced expression of NTRK2, which suggests the presence of NTRK2 fusion, was not observed in any of trkB positive GISTs, despite higher mRNA expression. TrkB expression was found in duodenal GISTs and more than half of small intestinal GISTs, and this subset of cases showed poor prognosis. However, there was not clear difference in clinical outcomes according to the trkB expression status in small intestinal GISTs. These findings may provide a possible hypothesis for trkB overexpression contributing to the tumorigenesis and aggressive clinical outcome in GISTs of duodenal origin.

Pubmed ID: 38191907 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Japan Society for the Promotion of Science,
    Id: 19H03789
  • Agency: Japan Society for the Promotion of Science,
    Id: 18K15329
  • Agency: Japan Society for the Promotion of Science,
    Id: 19K16753
  • Agency: Japan Society for the Promotion of Science,
    Id: 20K07415

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


STAR (tool)

RRID:SCR_004463

Software performing alignment of high-throughput RNA-seq data. Aligns RNA-seq reads to reference genome using uncompressed suffix arrays.

View all literature mentions

Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions

edgeR (tool)

RRID:SCR_012802

Bioconductor software package for Empirical analysis of Digital Gene Expression data in R. Used for differential expression analysis of RNA-seq and digital gene expression data with biological replication.

View all literature mentions

GENCODE (tool)

RRID:SCR_014966

Human and mouse genome annotation project which aims to identify all gene features in the human genome using computational analysis, manual annotation, and experimental validation.

View all literature mentions