Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat.

Plant phenomics (Washington, D.C.) | 2023

Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.

Pubmed ID: 38148766 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PLINK (tool)

RRID:SCR_001757

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

View all literature mentions

Haploview (tool)

RRID:SCR_003076

A Java based software tool designed to simplify and expedite the process of haplotype analysis by providing a common interface to several tasks relating to such analyses. Haploview currently allows users to examine block structures, generate haplotypes in these blocks, run association tests, and save the data in a number of formats. All functionalities are highly customizable. (entry from Genetic Analysis Software) * LD & haplotype block analysis * haplotype population frequency estimation * single SNP and haplotype association tests * permutation testing for association significance * implementation of Paul de Bakker's Tagger tag SNP selection algorithm. * automatic download of phased genotype data from HapMap * visualization and plotting of PLINK whole genome association results including advanced filtering options Haploview is fully compatible with data dumps from the HapMap project and the Perlegen Genotype Browser. It can analyze thousands of SNPs (tens of thousands in command line mode) in thousands of individuals. Note: Haploview is currently on a development and support freeze. The team is currently looking at a variety of options in order to provide support for the software. Haploview is an open source project hosted by SourceForge. The source can be downloaded at the SourceForge project site.

View all literature mentions

BEDTools (tool)

RRID:SCR_006646

A powerful toolset for genome arithmetic allowing one to address common genomics tasks such as finding feature overlaps and computing coverage. Bedtools allows one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic file formats such as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g., intersect two interval files), quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

View all literature mentions

TASSEL (tool)

RRID:SCR_012837

Software package which performs a variety of genetic analyses including association mapping, diversity estimation and calculating linkage disequilibrium. The association analysis between genotypes and phenotypes can be performed by either a general linear model or a mixed linear model. The general linear model now allows users to analyze complex field designs, environmental interactions, and epistatic interactions. The mixed model is specially designed to handle polygenic effects at multiple levels of relatedness including pedigree information. These new analyses should permit association analysis in a wide range plant and animal species. (entry from Genetic Analysis Software)

View all literature mentions