Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Reprogramming in Candida albicans Gene Expression Network under Butanol Stress Abrogates Hyphal Development.

International journal of molecular sciences | 2023

Candida albicans is the causative agent of invasive fungal infections. Its hyphae-forming ability is regarded as one of the important virulence factors. To unravel the impact of butanol on Candida albicans, it was placed in O+ve complete human serum with butanol (1% v/v). The Candida transcriptome under butanol stress was then identified by mRNA sequencing. Studies including electron microscopy demonstrated the inhibition of hyphae formation in Candida under the influence of butanol, without any significant alteration in growth rate. The numbers of genes upregulated in the butanol in comparison to the serum alone were 1061 (20 min), 804 (45 min), and 537 (120 min). Candida cells exhibited the downregulation of six hypha-specific transcription factors and the induction of four repressor/regulator genes. Many of the hypha-specific genes exhibited repression in the medium with butanol. The genes related to adhesion also exhibited repression, whereas, among the heat-shock genes, three showed inductions in the presence of butanol. The fungal-specific genes exhibited induction as well as repression in the butanol-treated Candida cells. Furthermore, ten upregulated genes formed the core stress gene set in the presence of butanol. In the gene ontology analysis, enrichment of the processes related to non-coding RNA, ribosome biosynthesis, and metabolism was observed in the induced gene set. On the other side, a few GO biological process terms, including biofilm formation and filamentous growth, were enriched in the repressed gene set. Taken together, under butanol stress, Candida albicans is unable to extend hyphae and shows growth by budding. Many of the genes with perturbed expression may have fitness or virulence attributes and may provide prospective sites of antifungal targets against C. albicans.

Pubmed ID: 38139056 RIS Download

Additional research tools detected in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Science and Engineering Research Board,
    Id: SERC/LS-432/2011
  • Agency: National Institute of Immunology,
    Id: Core grant

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Candida Genome Database (data repository)

RRID:SCR_002036

Database of genetic and molecular biological information about Candida albicans. Contains information about genes and proteins, descriptions and classifications of their biological roles, molecular functions, and subcellular localizations, gene, protein, and chromosome sequence information, tools for analysis and comparison of sequences and links to literature information. Each CGD gene or open reading frame has an individual Locus Page. Genetic loci that are not tied to DNA sequence also have Locus Pages. Provides Gene Ontology, GO, to all its users. Three ontologies that comprise GO (Molecular Function, Cellular Component, and Biological Process) are used by multiple databases to annotate gene products, so that this common vocabulary can be used to compare gene products across species. Development of ontologies is ongoing in order to incorporate new information. Data submissions are welcome.

View all literature mentions

National Culture Collection of Pathogenic Fungi Core Facility (access service resource)

RRID:SCR_018954

National core facility for deposition, maintenance, identification and supply of all pathogenic fungi. Services include depositing cultures, retrieval of same and identification of isolates and more. Facility of international standard for preservation and to handle deposits of medically important fungi and to supply authentic strains to investigators in India. Scientists have access to database of preserved medically important fungi. Will initiate fungal taxonomy research and impart training on taxonomy.

View all literature mentions