Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice.

PloS one | 2023

Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.

Pubmed ID: 38011220 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Novus Biologicals (tool)

RRID:SCR_004286

Commercial antibody vendor which supplies antibodies and other products to life science researchers.

View all literature mentions

Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

G*Power (tool)

RRID:SCR_013726

Data analytics software to compute statistical power analyses for many commonly used statistical tests in social and behavioral research. It can also be used to compute effect sizes and to graphically display the results of power analyses.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

CPT1B-specific antibody (antibody)

RRID:AB_2713959

This polyclonal targets CPT1B-specific

View all literature mentions

UCP3 antibody (antibody)

RRID:AB_2272729

This polyclonal targets UCP3

View all literature mentions

Anti-CD36 antibody [EPR6573] (antibody)

RRID:AB_2716564

This monoclonal targets CD36

View all literature mentions

CD36 Antibody (antibody)

RRID:AB_920879

This unknown targets CD36

View all literature mentions