Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Terpenoid balance in Aspergillus nidulans unveiled by heterologous squalene synthase expression.

bioRxiv : the preprint server for biology | 2023

Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize due to cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a new twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wildtype, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1-2, 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wildtype chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate derived austinols provides unexpected insight into routes of terpene synthesis in fungi.

Pubmed ID: 37905136 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCRR NIH HHS, United States
    Id: S10 RR013790
  • Agency: NCI NIH HHS, United States
    Id: P30 CA014520
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI150669
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM112739
  • Agency: NIAID NIH HHS, United States
    Id: R44 AI140943
  • Agency: NCCIH NIH HHS, United States
    Id: R01 AT009143
  • Agency: NIGMS NIH HHS, United States
    Id: R24 GM141526

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FlowJo (tool)

RRID:SCR_008520

Software for single-cell flow cytometry analysis. Its functions include management, display, manipulation, analysis and publication of the data stream produced by flow and mass cytometers.

View all literature mentions