Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The complete chloroplast genome of Cicer reticulatum and comparative analysis against relative Cicer species.

Scientific reports | 2023

The chloroplast (cp) genome is an adequate genomic resource to investigate evolutionary relationships among plant species and it carries marker genes available for species identification. The Cicer reticulatum is one of perennial species as the progenitor of cultivated chickpeas. Although a large part of the land plants has a quadruple chloroplast genome organization, the cp genome of C. reticulatum consists of one LSC (Large Single Copy Region), one SSC (Small Single Copy Region), and one IR (Inverted Repeat) region, which indicates that it has an untypical and unique structure. This type of chloroplast genome belongs to the IR-lacking clade. Chloroplast DNA (cpDNA) was extracted from fresh leaves using a high salt-based protocol and sequencing was performed using DNA Nanoball Sequencing technology. The comparative analysis employed between the species to examine genomic differences and gene homology. The study also included codon usage frequency analysis, hotspot divergence analysis, and phylogenetic analysis using various bioinformatics tools. The cp genome of C. reticulatum was found 125,794 bp in length, with an overall GC content of 33.9%. With a total of 79 protein-coding genes, 34 tRNA genes, and 4 rRNA genes. Comparative genomic analysis revealed 99.93% similarity between C. reticulatum and C. arietinum. Phylogenetic analysis further indicated that the closest evolutionary relative to C. arietinum was C. reticulatum, whereas the previously sequenced wild Cicer species displayed slight distinctions across their entire coding regions. Several genomic regions, such as clpP and ycf1, were found to exhibit high nucleotide diversity, suggesting their potential utility as markers for investigating the evolutionary relationships within the Cicer genus. The first complete cp genome sequence of C. reticulatum will provide novel insights for future genetic research on Cicer crops.

Pubmed ID: 37857674 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GenBank (tool)

RRID:SCR_002760

NIH genetic sequence database that provides annotated collection of all publicly available DNA sequences for almost 280 000 formally described species (Jan 2014) .These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of International Nucleotide Sequence Database Collaboration and daily data exchange with European Nucleotide Archive (ENA) and DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through NCBI Entrez retrieval system, which integrates data from major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of GenBank database are available by FTP.

View all literature mentions

DnaSP (tool)

RRID:SCR_003067

A software package for the analysis of nucleotide polymorphism from aligned DNA sequence data. DnaSP can estimate several measures of DNA sequence variation within and between populations (in noncoding, synonymous or nonsynonymous sites, or in various sorts of codon positions), as well as linkage disequilibrium, recombination, gene flow and gene conversion parameters. DnaSP can also carry out several tests of neutrality: Hudson, Kreitman and Aguad (1987), Tajima (1989), McDonald and Kreitman (1991), Fu and Li (1993), and Fu (1997) tests. Additionally, DnaSP can estimate the confidence intervals of some test-statistics by the coalescent. The results of the analyses are displayed on tabular and graphic form.

View all literature mentions

MAFFT (tool)

RRID:SCR_011811

Software package as multiple alignment program for amino acid or nucleotide sequences. Can align up to 500 sequences or maximum file size of 1 MB. First version of MAFFT used algorithm based on progressive alignment, in which sequences were clustered with help of Fast Fourier Transform. Subsequent versions have added other algorithms and modes of operation, including options for faster alignment of large numbers of sequences, higher accuracy alignments, alignment of non-coding RNA sequences, and addition of new sequences to existing alignments.

View all literature mentions

jModelTest (tool)

RRID:SCR_015244

Software tool used to carry out statistical selection of best-fit models of nucleotide substitution without the aid of PAUP*. It implements five different model selection strategies: hierarchical and dynamical likelihood ratio tests, Akaike and Bayesian information criteria, and a decision theory method. It also provides estimates of model selection uncertainty, parameter importances, and model-averaged parameter estimates.

View all literature mentions

GetOrganelle (tool)

RRID:SCR_022963

Software toolkit to assembly of organelle genome from genomic skimming data. Used for accurate de novo assembly of organelle genomes.

View all literature mentions

MEGA (tool)

RRID:SCR_023017

Software for molecular evolutionary genetics analysis.Enables comparative analysis of molecular sequences in phylogenetics and evolutionary medicine.

View all literature mentions