Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

1,25(OH)2D3 ameliorates doxorubicin‑induced cardiomyopathy by inhibiting the NLRP3 inflammasome and oxidative stress.

Experimental and therapeutic medicine | 2023

Doxorubicin (DOX), as a chemotherapy agent with marked therapeutic effect, can be used to treat certain types of cancer such as leukemia, lymphoma and breast cancer. However, the toxic effects of DOX on cardiomyocytes limit its clinical application. Oxidative stress has been documented to serve a pivotal role in DOX-induced cardiomyopathy. Previous studies have reported that 1,25(OH)2D3 has antioxidant and anti-inflammatory effects and can inhibit the renin-angiotensin system. However, the effects of 1,25(OH)2D3 on the pathophysiological processes of DOX-induced cardiomyopathy and its mechanisms remain poorly understood. To investigate these potential effects, C57BL/6J mice were used to construct a DOX-induced cardiomyopathy model and treated with 1,25(OH)2D3. At 4 weeks after the first injection of DOX, cardiac function and myocardial injury were evaluated by echocardiograph and ELISA. Masson's trichrome staining and RT-qPCR were used to assess myocardial fibrosis, and immunohistochemistry and western blotting were performed to analyze expression levels of inflammation and oxidative stress, and the NLRP3 inflammasome pathway. ChIP assay was used to assess the effects of 1,25(OH)2D3 on histone modification in the NLRP3 and Nrf2 promoters. The results showed that 1,25(OH)2D3 treatment increased LVEF and LVFS, reduced serum levels of BNP and cTnT, inhibited the collagen deposition and profibrotic molecular expression, and downregulated the levels of inflammatory cytokines in DOX-induced cardiomyopathy. ROS and antioxidant indices were also ameliorated after 1,25(OH)2D3 treatment. In addition, 1,25(OH)2D3 was found to inhibit the NLRP3 inflammasome and KEAP-Nrf2 pathways through regulation of the levels of H3K4me3, H3K27me3 and H2AK119Ub in the NLRP3 and Nrf2 promoters. In conclusion, the present study demonstrated that 1,25(OH)2D3 regulated histone modification in the NLRP3 and Nrf2 promoters, which in turn inhibits the activation of NLRP3 inflammasome and oxidative stress in cardiomyocytes, alleviating DOX-induced cardiomyopathy. Therefore, 1,25(OH)2D3 may be a potential drug candidate for the treatment of DOX-induced cardiomyopathy.

Pubmed ID: 37559932 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions