Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cryo-EM structure of the chain-elongating E3 ubiquitin ligase UBR5.

The EMBO journal | 2023

UBR5 is a nuclear E3 ligase that ubiquitinates a vast range of substrates for proteasomal degradation. This HECT domain-containing ubiquitin ligase has recently been identified as an important regulator of oncogenes, e.g., MYC, but little is known about its structure or mechanisms of substrate engagement and ubiquitination. Here, we present the cryo-EM structure of human UBR5, revealing an α-solenoid scaffold with numerous protein-protein interacting motifs, assembled into an antiparallel dimer that adopts further oligomeric states. Using cryo-EM processing tools, we observe the dynamic nature of the UBR5 catalytic domain, which we postulate is important for its enzymatic activity. We characterise the proteasomal nuclear import factor AKIRIN2 as an interacting protein and propose UBR5 as an efficient ubiquitin chain elongator. This preference for ubiquitinated substrates and several distinct domains for protein-protein interactions may explain how UBR5 is linked to several different signalling pathways and cancers. Together, our data expand on the limited knowledge of the structure and function of HECT E3 ligases.

Pubmed ID: 37409633 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R35 GM128855
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM008570

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jalview (tool)

RRID:SCR_006459

A free program for multiple sequence alignment editing, visualisation and analysis that is available in two forms: a lightweight Java applet for use in web applications, and a powerful desktop application that employs web services for sequence alignment, secondary structure prediction and the retrieval of alignments, sequences, annotation and structures from public databases and any DAS 1.53 compliant sequence or annotation server. Use it to view and edit sequence alignments, analyse them with phylogenetic trees and principal components analysis (PCA) plots and explore molecular structures and annotation. Jalview has built in DNA, RNA and protein sequence and structure visualisation and analysis capabilities. It uses Jmol to view 3D structures, and VARNA to display RNA secondary structure.

View all literature mentions

MAFFT (tool)

RRID:SCR_011811

Software package as multiple alignment program for amino acid or nucleotide sequences. Can align up to 500 sequences or maximum file size of 1 MB. First version of MAFFT used algorithm based on progressive alignment, in which sequences were clustered with help of Fast Fourier Transform. Subsequent versions have added other algorithms and modes of operation, including options for faster alignment of large numbers of sequences, higher accuracy alignments, alignment of non-coding RNA sequences, and addition of new sequences to existing alignments.

View all literature mentions

Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

Phenix (tool)

RRID:SCR_014224

A Python-based software suite for the automated determination of molecular structures using X-ray crystallography and other methods. Phenix includes programs for assessing data quality, experimental phasing, molecular replacement, model building, structure refinement, and validation. It also includes tools for reflection data and creating maps and models. Phenix can also be used for neutron crystallography. Tutorials and examples are available in the documentation tab.

View all literature mentions

UCSF ChimeraX (tool)

RRID:SCR_015872

Software for 3D/4D image reconstruction. UCSF ChimeraX is the next-generation molecular visualization program from the Resource for Biocomputing, Visualization, and Informatics (RBVI), following UCSF Chimera.

View all literature mentions