Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

New insights from trio whole-exome sequencing in the children with kidney disease: A single-center retrospective cohort study.

Molecular genetics & genomic medicine | 2023

Kidney disease of children markedly affects their health and development. Limited clinical data of early-stage kidney disease render a tremendous challenge for the accurate diagnosis. Trio whole-exome sequencing (Trio-WES) is emerging as a first-line diagnostic strategy in pediatric kidney disease, and shows important implications for the precision medicine strategies of children with kidney disease.

Pubmed ID: 37248651 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GATK (tool)

RRID:SCR_001876

A software package to analyze next-generation resequencing data. The toolkit offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance. Its robust architecture, powerful processing engine and high-performance computing features make it capable of taking on projects of any size. This software library makes writing efficient analysis tools using next-generation sequencing data very easy, and second it's a suite of tools for working with human medical resequencing projects such as 1000 Genomes and The Cancer Genome Atlas. These tools include things like a depth of coverage analyzers, a quality score recalibrator, a SNP/indel caller and a local realigner. (entry from Genetic Analysis Software)

View all literature mentions

SAMTOOLS (tool)

RRID:SCR_002105

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

View all literature mentions

PROVEAN (tool)

RRID:SCR_002182

A software tool which predicts whether an amino acid substitution or indel has an impact on the biological function of a protein.

View all literature mentions

ClinVar (tool)

RRID:SCR_006169

Archive of aggregated information about sequence variation and its relationship to human health. Provides reports of relationships among human variations and phenotypes along with supporting evidence. Submissions from clinical testing labs, research labs, locus-specific databases, expert panels and professional societies are welcome. Collects reports of variants found in patient samples, assertions made regarding their clinical significance, information about submitter, and other supporting data. Alleles described in submissions are mapped to reference sequences, and reported according to HGVS standard.

View all literature mentions

1000 Genomes Project and AWS (tool)

RRID:SCR_008801

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

View all literature mentions

MutationTaster (tool)

RRID:SCR_010777

Evaluates disease-causing potential of sequence alterations.

View all literature mentions

SIFT (tool)

RRID:SCR_012813

Data analysis service to predict whether an amino acid substitution affects protein function based on sequence homology and the physical properties of amino acids. SIFT can be applied to naturally occurring nonsynonymous polymorphisms and laboratory-induced missense mutations. (entry from Genetic Analysis Software) Web service is also available.

View all literature mentions