Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular basis of FAAH-OUT-associated human pain insensitivity.

Brain : a journal of neurology | 2023

Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.

Pubmed ID: 37222214 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
  • Agency: Medical Research Council, United Kingdom
    Id: MR/R011737/1
  • Agency: Medical Research Council, United Kingdom
    Id: G1100340
  • Agency: Versus Arthritis, United Kingdom
    Id: 20200

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Zyagen (tool)

RRID:SCR_005295

A commercial service organization from Zyagen.

View all literature mentions

AMS Biotechnology (tool)

RRID:SCR_008929

An Antibody supplier

View all literature mentions

Zyagen (tool)

RRID:SCR_013650

An Antibody supplier

View all literature mentions

ThermoFisher Scientific EVOS M5000 Imaging System (tool)

RRID:SCR_023650

Microsoft system includes integrated digital inverted benchtop microscope for four-color fluorescence, transmitted-light, and color imaging. Provides interchangeable optics with autofocus, single-click multi-channel image acquisition.3.2 Megapixels, monochrome, CMOS camera. Offers software for acquisition, analysis, and automated cell counting.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions