Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Efficient Adsorption of Tebuconazole in Aqueous Solution by Calcium Modified Water Hyacinth-Based Biochar: Adsorption Kinetics, Mechanism, and Feasibility.

Molecules (Basel, Switzerland) | 2023

The application of fungicides (such as tebuconazole) can impose harmful impacts on the ecosystem and humans. In this study, a new calcium modified water hyacinth-based biochar (WHCBC) was prepared and its effectiveness for removing tebuconazole (TE) via adsorption from water was tested. The results showed that Ca was loaded chemically (CaC2O4) onto the surface of WHCBC. The adsorption capacity of the modified biochar increased by 2.5 times in comparison to that of the unmodified water hyacinth biochar. The enhanced adsorption was attributed to the improved chemical adsorption capacity of the biochar through calcium modification. The adsorption data were better fitted to the pseudo-second-order kinetics and the Langmuir isotherm model, indicating that the adsorption process was dominated by monolayer adsorption. It was found that liquid film diffusion was the main rate-limiting step in the adsorption process. The maximum adsorption capacity of WHCBC was 40.5 mg/g for TE. The results indicate that the absorption mechanisms involved surface complexation, hydrogen bonding, and π-π interactions. The inhibitory rate of Cu2+ and Ca2+ on the adsorption of TE by WHCBC were at 4.05-22.8%. In contrast, the presence of other coexisting cations (Cr6+, K+, Mg2+, Pb2+), as well as natural organic matter (humic acid), could promote the adsorption of TE by 4.45-20.9%. In addition, the regeneration rate of WHCBC was able to reach up to 83.3% after five regeneration cycles by desorption stirring with 0.2 mol/L HCl (t = 360 min). The results suggest that WHCBC has a potential in application for removing TE from water.

Pubmed ID: 37110715 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SPSS (tool)

RRID:SCR_002865

Software package used for interactive, or batched, statistical analysis in social science, health sciences and marketing. Software platform offers advanced statistical analysis, a library of machine-learning algorithms, text analysis, open-source extensibility, integration with big data and deployment into applications.Versions that were produced by SPSS Inc. before the IBM acquisition (Versions 18 and earlier) would be given origin or publisher of SPSS Inc. in Chicago.

View all literature mentions