Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach.

Clinical epigenetics | 2023

Imprinting disorders (ImpDis) comprise diseases which are caused by aberrant regulation of monoallelically and parent-of-origin-dependent expressed genes. A characteristic molecular change in ImpDis patients is aberrant methylation signatures at disease-specific loci, without an obvious DNA change at the specific differentially methylated region (DMR). However, there is a growing number of reports on multilocus imprinting disturbances (MLIDs), i.e. aberrant methylation at different DMRs in the same patient. These MLIDs account for a significant number of patients with specific ImpDis, and several reports indicate a central role of pathogenic maternal effect variants in their aetiology by affecting the maturation of the oocyte and the early embryo. Though several studies on the prevalence and the molecular causes of MLID have been conducted, homogeneous datasets comprising both genomic and methylation data are still lacking.

Pubmed ID: 36859312 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


KGGSeq (tool)

RRID:SCR_005311

A biological Knowledge-based mining platform for Genomic and Genetic studies using Sequence data. The software platform, constituted of bioinformatics and statistical genetics functions, makes use of valuable biologic resources and knowledge for sequencing-based genetic mapping of variants / genes responsible for human diseases / traits. It facilitates geneticists to fish for the genetic determinants of human diseases / traits in the big sea of DNA sequences. KGGSeq has paid attention to downstream analysis of genetic mapping. The framework was implemented to filter and prioritize genetic variants from whole exome sequencing data.

View all literature mentions

QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions

MutationTaster (tool)

RRID:SCR_010777

Evaluates disease-causing potential of sequence alterations.

View all literature mentions

SIFT (tool)

RRID:SCR_012813

Data analysis service to predict whether an amino acid substitution affects protein function based on sequence homology and the physical properties of amino acids. SIFT can be applied to naturally occurring nonsynonymous polymorphisms and laboratory-induced missense mutations. (entry from Genetic Analysis Software) Web service is also available.

View all literature mentions

Genome Aggregation Database (tool)

RRID:SCR_014964

Database that aggregates exome and genome sequencing data from large-scale sequencing projects. The gnomAD data set contains individuals sequenced using multiple exome capture methods and sequencing chemistries. Raw data from the projects have been reprocessed through the same pipeline, and jointly variant-called to increase consistency across projects.

View all literature mentions

Combined Annotation Dependent Depletion (tool)

RRID:SCR_018393

Web tool for predicting deleteriousness of variants throughout human genome. Software tool for scoring deleteriousness of single nucleotide variants as well as insertion and deletions variants in human genome.

View all literature mentions