Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A protocol for the gram-scale synthesis of polyfluoroaryl sulfides via an SNAr step.

STAR protocols | 2023

Polyfluoroaryl sulfide is one of the prevalent motifs ubiquitous in materials and pharmaceutical chemistry. We herein describe a simple yet efficient procedure for their synthesis from readily available thiols and polyfluoroarenes via an SNAr step. We detail specific steps for a gram-scale preparation of 2-((perfluoropyridin-4-yl)thio)benzo[d]thiazole 3 from mercaptobenzothiazole 1 and pentafluoropyridine 2. For complete details on the use and execution of this protocol, please refer to Liao et al. (2022).1.

Pubmed ID: 36857078 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ADJUST (tool)

RRID:SCR_009526

A completely automatic algorithm for artifact identification and removal in EEG data. ADJUST is based on Independent Component Analysis (ICA), a successful but unsupervised method for isolating artifacts from EEG recordings. ADJUST identifies artifacted ICA components by combining stereotyped artifact-specific spatial and temporal features. Features are optimised to capture blinks, eye movements and generic discontinuities. Once artifacted IC are identified, they can be simply removed from the data while leaving the activity due to neural sources almost unaffected.

View all literature mentions