Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Application of Machine Learning to Metabolomic Profile Characterization in Glioblastoma Patients Undergoing Concurrent Chemoradiation.

Metabolites | 2023

We here characterize changes in metabolite patterns in glioblastoma patients undergoing surgery and concurrent chemoradiation using machine learning (ML) algorithms to characterize metabolic changes during different stages of the treatment protocol. We examined 105 plasma specimens (before surgery, 2 days after surgical resection, before starting concurrent chemoradiation, and immediately after chemoradiation) from 36 patients with isocitrate dehydrogenase (IDH) wildtype glioblastoma. Untargeted GC-TOF mass spectrometry-based metabolomics was used given its superiority in identifying and quantitating small metabolites; this yielded 157 structurally identified metabolites. Using Multinomial Logistic Regression (MLR) and GradientBoostingClassifier (GB Classifier), ML models classified specimens based on metabolic changes. The classification performance of these models was evaluated using performance metrics and area under the curve (AUC) scores. Comparing post-radiation to pre-radiation showed increased levels of 15 metabolites: glycine, serine, threonine, oxoproline, 6-deoxyglucose, gluconic acid, glycerol-alpha-phosphate, ethanolamine, propyleneglycol, triethanolamine, xylitol, succinic acid, arachidonic acid, linoleic acid, and fumaric acid. After chemoradiation, a significant decrease was detected in 3-aminopiperidine 2,6-dione. An MLR classification of the treatment phases was performed with 78% accuracy and 75% precision (AUC = 0.89). The alternative GB Classifier algorithm achieved 75% accuracy and 77% precision (AUC = 0.91). Finally, we investigated specific patterns for metabolite changes in highly correlated metabolites. We identified metabolites with characteristic changing patterns between pre-surgery and post-surgery and post-radiation samples. To the best of our knowledge, this is the first study to describe blood metabolic signatures using ML algorithms during different treatment phases in patients with glioblastoma. A larger study is needed to validate the results and the potential application of this algorithm for the characterization of treatment responses.

Pubmed ID: 36837918 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: K12 CA138464

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


scikit-learn (tool)

RRID:SCR_002577

scikit-learn: machine learning in Python

View all literature mentions