Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Postbiotics Derived from L. paracasei ET-22 Inhibit the Formation of S. mutans Biofilms and Bioactive Substances: An Analysis.

Molecules (Basel, Switzerland) | 2023

Globally, dental caries is one of the most common non-communicable diseases for patients of all ages; Streptococcus mutans (S. mutans) is its principal pathogen. Lactobacillus paracasei (L. paracasei) shows excellent anti-pathogens and immune-regulation functions in the host. The aim of this study is to evaluate the effects of L. paracasei ET-22 on the formation of S. mutans biofilms. The living bacteria, heat-killed bacteria, and secretions of L. paracasei ET-22 were prepared using the same number of bacteria. In vitro, they were added into artificial-saliva medium, and used to coculture with the S. mutans. Results showed that the living bacteria and secretions of L. paracasei ET-22 inhibited biofilm-growth, the synthesis of water-soluble polysaccharide and water-insoluble polysaccharide, and virulence-gene-expression levels related to the formation of S. mutans biofilms. Surprisingly, the heat-killed L. paracasei ET-22, which is a postbiotic, also showed a similar regulation function. Non-targeted metabonomics technology was used to identify multiple potential active-substances in the postbiotics of L. paracasei ET-22 that inhibit the formation of S. mutans biofilms, including phenyllactic acid, zidovudine monophosphate, and citrulline. In conclusion, live bacteria and its postbiotics of L. paracasei ET-22 all have inhibitory effects on the formation of S. mutans biofilm. The postbiotics of L. paracasei ET-22 may be a promising biological anticariogenic-agent.

Pubmed ID: 36770903 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


HMDB (tool)

RRID:SCR_007712

Curated collection of human metabolite and human metabolism data which contains records for endogenous metabolites, with each metabolite entry containing detailed chemical, physical, biochemical, concentration, and disease information. This is further supplemented with thousands of NMR and MS spectra collected on purified reference metabolites.

View all literature mentions

METLIN (tool)

RRID:SCR_010500

A public repository of metabolite information as well as tandem mass spectrometry data is provided to facilitate metabolomics experiments. It contains structures and represents a data management system designed to assist in a broad array of metabolite research and metabolite identification. An annotated list of known metabolites and their mass, chemical formula, and structure are available. Each metabolite is linked to outside resources for further reference and inquiry. MS/MS data is also available on many of the metabolites.

View all literature mentions

Comstat (tool)

RRID:SCR_014566

A software that is used to analyze image stacks of biofilms that were recorded by confocal microscopes. While this program does not have any statistical calculation methods, it can extract a number of quantitative parameters from the images. This software was initially developed by Arne Heydorn and Bjarne Ersboll as a MatLab script until it was expanded into an independent software in 2008.

View all literature mentions

Progenesis QI (tool)

RRID:SCR_018923

Software tool as next generation in LC-MS proteomics data analysis software by Nonlinear Dynamics.

View all literature mentions