Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Truncated-semaphorin3A is a potential regulatory molecule to restore immune homeostasis in immune-mediated diseases.

Frontiers in pharmacology | 2022

Regulatory molecules have recently been recognized for their beneficial effects in the treatment of immune-mediated diseases, rather than using cytotoxic immune-suppressing drugs, which are associated with many unwanted side effects. Semaphorin3A (sema3A), a unique regulatory master of the immune system, was shown to be decreased in the serum of systemic lupus erythematosus (SLE) patients, in association with disease severity. Later, we were able to show its extremely beneficial effect in treating lupus nephritis in the NZB/W mice model. The mechanisms by which sema3A maintains its regulatory effect is by binding the regulatory receptor CD72 on B cells, thereby reducing the threshold of BCR signaling on B cells and reducing the production of pro-inflammatory cytokines. The aim of this study was to generate a stable sema3A molecule, easy to produce with a higher binding capacity to CD72 receptor rather than to Neuropilin-1 (NRP-1) receptor, which is expressed in many cell types. Using the crystallographic structure of parental sema3A, we synthesized a new secreted (shorter) sema3A derivative, which we called truncated sema3A (T-sema3A). The new molecule lacked the NRP-1 binding domain (the C-terminal site) and has an artificial dimerization site at position 257 (serine residue was exchanged with a cysteine residue). To facilitate the purification of this molecule we added Histidine epitope tag in frame upstream to a stop codon. This construct was transfected using a viral vector to 293HEK cells to generate cells stably expressing T-sema3A. T-sema3A is shown to be with a higher binding ability to CD72 than to NRP-1 as demonstrated by a homemade ELISA. In addition, T-sema3A was shown to be a regulatory agent which can induce the expression of IL-10 and TGF-β and reduce the secretion of pro-inflammatory cytokines such as IL-6, IFN-γ, and IL-17A from human T and B-lymphocytes. Keeping this in mind, T-sema3A is highly effective in maintaining immune homeostasis, therefore, becoming a potential agent in restoring the regulatory status of the immune system in immune-mediated diseases.

Pubmed ID: 36703747 RIS Download

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MR/M000141/1
  • Agency: Medical Research Council, United Kingdom
    Id: MR/T000503/1

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BLAST Assembled RefSeq Genomes (tool)

RRID:SCR_008420

This portal takes you to the NCBI''s BLAST Assembled RefSeq Genomes. The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches. BLAST can be used to infer functional and evolutionary relationships between sequences as well as help identify members of gene families. Sponsors: This resource is supported by the National Institutes of Health. Keywords: BLAST, Genome, Search engine, Sequence, Biological, Local, Alignment, Nucleotide, Protein, Program, Database, Stastical, Functional, Evolutionaary, Gene,

View all literature mentions

BLAST Assembled RefSeq Genomes (tool)

RRID:SCR_008420

This portal takes you to the NCBI''s BLAST Assembled RefSeq Genomes. The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches. BLAST can be used to infer functional and evolutionary relationships between sequences as well as help identify members of gene families. Sponsors: This resource is supported by the National Institutes of Health. Keywords: BLAST, Genome, Search engine, Sequence, Biological, Local, Alignment, Nucleotide, Protein, Program, Database, Stastical, Functional, Evolutionaary, Gene,

View all literature mentions

BLAST Assembled RefSeq Genomes (tool)

RRID:SCR_008420

This portal takes you to the NCBI''s BLAST Assembled RefSeq Genomes. The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches. BLAST can be used to infer functional and evolutionary relationships between sequences as well as help identify members of gene families. Sponsors: This resource is supported by the National Institutes of Health. Keywords: BLAST, Genome, Search engine, Sequence, Biological, Local, Alignment, Nucleotide, Protein, Program, Database, Stastical, Functional, Evolutionaary, Gene,

View all literature mentions

BLAST Assembled RefSeq Genomes (tool)

RRID:SCR_008420

This portal takes you to the NCBI''s BLAST Assembled RefSeq Genomes. The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches. BLAST can be used to infer functional and evolutionary relationships between sequences as well as help identify members of gene families. Sponsors: This resource is supported by the National Institutes of Health. Keywords: BLAST, Genome, Search engine, Sequence, Biological, Local, Alignment, Nucleotide, Protein, Program, Database, Stastical, Functional, Evolutionaary, Gene,

View all literature mentions

HUVEC-C (tool)

RRID:CVCL_2959

Cell line HUVEC-C is a Finite cell line with a species of origin Homo sapiens

View all literature mentions

HUVEC-C (tool)

RRID:CVCL_2959

Cell line HUVEC-C is a Finite cell line with a species of origin Homo sapiens

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293-FT (tool)

RRID:CVCL_6911

Cell line HEK293-FT is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions