Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Celsr2 Knockout Alleviates Inhibitory Synaptic Stripping and Benefits Motoneuron Survival and Axon Regeneration After Branchial Plexus Avulsion.

Molecular neurobiology | 2023

Axotomy-induced synaptic stripping modulates survival and axon regeneration of injured motoneurons. Celsr2 is supposed to mediate homophilic interactions of neighboring cells during development, and its role in synaptic stripping remains unknow. In a model of brachial plexus avulsion, Celsr2 knockout improved functional recovery, motoneuron survival, and axon regeneration. Celsr2 was indicated to express in spinal motoneurons, excitatory and inhibitory interneurons, astrocytes, and a subset of oligodendrocytes using Celsr2LacZ mice. Double immunostaining showed that the coverage of inhibitory and excitatory vesicles on injured motoneurons were remarkably reduced after injury, whereas more inhibitory vesicles were maintained in Celsr2-/- mutants than control mice. In the ultrastructure, the density of inhibitory F-boutons on injured motoneurons was higher in Celsr2-/- mutants than controls. Conditional knockout of Celsr2 in astrocytes or oligodendrocytes showed the similar axotomy-induced synaptic withdrawal to the control. RNAseq of injured spinal samples identified 12 MHC I molecules with significant changes between Celsr2-/- and control mice. After injury, expression of MHC I surrounding injured motoneurons was increased, particularly high in Celsr2-/- mutants. In conclusion, Celsr2 knockout enhances MHC I signaling, alleviates inhibitory synaptic stripping cell-autonomously, and contributes to motoneuron survival and regeneration, and Celsr2 is a potential target for neural repair.

Pubmed ID: 36593433 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Promega (tool)

RRID:SCR_006724

An Antibody supplier

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions