Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Operant conditioning of stochastic chemical reaction networks.

PLoS computational biology | 2022

Adapting one's behavior to environmental conditions and past experience is a key trait of living systems. In the biological world, there is evidence for adaptive behaviors such as learning even in naturally occurring, non-neural, single-celled organisms. In the bioengineered world, advances in synthetic cell engineering and biorobotics have created the possibility of implementing lifelike systems engineered from the bottom up. This will require the development of programmable control circuitry for such biomimetic systems that is capable of realizing such non-trivial and adaptive behavior, including modification of subsequent behavior in response to environmental feedback. To this end, we report the design of novel stochastic chemical reaction networks capable of probabilistic decision-making in response to stimuli. We show that a simple chemical reaction network motif can be tuned to produce arbitrary decision probabilities when choosing between two or more responses to a stimulus signal. We further show that simple feedback mechanisms from the environment can modify these probabilities over time, enabling the system to adapt its behavior dynamically in response to positive or negative reinforcement based on its decisions. This system thus acts as a form of operant conditioning of the chemical circuit, in the sense that feedback provided based on decisions taken by the circuit form the basis of the learning process. Our work thus demonstrates that simple chemical systems can be used to implement lifelike behavior in engineered biomimetic systems.

Pubmed ID: 36399506 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Science Foundation (tool)

RRID:SCR_012938

An independent federal agency created by Congress to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense They are the funding source for approximately 20 percent of all federally supported basic research conducted by America''s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing. NSF leadership has two major components: a director who oversees NSF staff and management responsible for program creation and administration, merit review, planning, budget and day-to-day operations; and a 24-member National Science Board (NSB) of eminent individuals that meets six times a year to establish the overall policies of the foundation.The director and all Board members serve six year terms. Each of them, as well as the NSF deputy director, is appointed by the President of the United States and confirmed by the U.S. Senate. At present, NSF has a total workforce of about 2,100 at its Arlington, Va., headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General. NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. They are tasked with keeping the United States at the leading edge of discovery in areas from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports high-risk, high pay-off ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, they ensure that research is fully integrated with education so that today''s revolutionary work will also be training tomorrow''s top scientists and engineers NSF''s task of identifying and funding work at the frontiers of science and engineering is not a top-down process.

View all literature mentions