Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

An Approach for Fall Prediction Based on Kinematics of Body Key Points Using LSTM.

International journal of environmental research and public health | 2022

Many studies have used sensors attached to adults in order to collect signals by which one can carry out analyses to predict falls. In addition, there are research studies in which videos and photographs were used to extract and analyze body posture and body kinematics. The present study proposes an integrated approach consisting of body kinematics and machine learning. The model data consist of video recordings collected in the UP-Fall Detection dataset experiment. Three models based on long-short-term memory (LSTM) network-4p-SAFE, 5p-SAFE, and 6p-SAFE for four, five, and six parameters-were developed in this work. The parameters needed for these models consist of some coordinates and angles extracted from videos. These models are easy to apply to the sequential images collected by ordinary cameras, which are installed everywhere, especially on aged-care premises. The accuracy of predictions was as good as 98%. Finally, the authors discuss that, by applying these models, the health and wellness of adults and elderlies will be considerably promoted.

Pubmed ID: 36360642 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MatPlotLib (tool)

RRID:SCR_008624

Python 2D plotting library which produces publication quality figures in variety of hardcopy formats and interactive environments across platforms. Used in python scripts, web application servers, and six graphical user interface toolkits. Used to generate plots, histograms, power spectra, bar charts, error charts, scatter plots.

View all literature mentions

NumPy (tool)

RRID:SCR_008633

NumPy is the fundamental package needed for scientific computing with Python. It contains among other things: * a powerful N-dimensional array object * sophisticated (broadcasting) functions * tools for integrating C/C and Fortran code * useful linear algebra, Fourier transform, and random number capabilities. Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. Sponsored by ENTHOUGHT

View all literature mentions