Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains.

mBio | 2022

Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.

Pubmed ID: 36354333 RIS Download

Associated grants

  • Agency: NIH HHS, United States
    Id: DP5 OD023065
  • Agency: NIAID NIH HHS, United States
    Id: T32 AI007417

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Clustal Omega (tool)

RRID:SCR_001591

Software package as multiple sequence alignment tool that uses seeded guide trees and HMM profile-profile techniques to generate alignments between three or more sequences. Accepts nucleic acid or protein sequences in multiple sequence formats NBRF/PIR, EMBL/UniProt, Pearson (FASTA), GDE, ALN/Clustal, GCG/MSF, RSF.

View all literature mentions

Hmmer (tool)

RRID:SCR_005305

Tool for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST.

View all literature mentions

Bowtie (tool)

RRID:SCR_005476

Software ultrafast memory efficient tool for aligning sequencing reads. Bowtie is short read aligner.

View all literature mentions

IRanges (tool)

RRID:SCR_006420

Software tool for computing and annotating genomic ranges.Provides efficient low-level and highly reusable S4 classes for storing ranges of integers, RLE vectors (Run-Length Encoding), and, more generally, data that can be organized sequentially (formally defined as Vector objects), as well as views on these Vector objects. Efficient list-like classes are also provided for storing big collections of instances of the basic classes. All classes in the package use consistent naming and share the same rich and consistent Vector API as much as possible.

View all literature mentions

BEDTools (tool)

RRID:SCR_006646

A powerful toolset for genome arithmetic allowing one to address common genomics tasks such as finding feature overlaps and computing coverage. Bedtools allows one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic file formats such as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g., intersect two interval files), quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

View all literature mentions

TriTrypDB (tool)

RRID:SCR_007043

An integrated genomic and functional genomic database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. ''''User Comments'''' may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate. TriTrypDB provides programmatic access to its searches, via REST Web Services. The result of a web service request is a list of records (genes, ESTs, etc) in either XML or JSON format. REST services can be executed in a browser by typing a specific URL. TriTrypDB and its continued development are possible through the collaborative efforts between EuPathDB, GeneDB and colleagues at the Seattle Biomedical Research Institute (SBRI).

View all literature mentions

CD-HIT (tool)

RRID:SCR_007105

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for clustering biological sequences with many applications in various fields such as making non-redundant databases, finding duplicates, identifying protein families, filtering sequence errors and improving sequence assembly etc. It is very fast and can handle extremely large databases. CD-HIT helps to significantly reduce the computational and manual efforts in many sequence analysis tasks and aids in understanding the data structure and correct the bias within a dataset. The CD-HIT package has CD-HIT, CD-HIT-2D, CD-HIT-EST, CD-HIT-EST-2D, CD-HIT-454, CD-HIT-PARA, PSI-CD-HIT, CD-HIT-OTU and over a dozen scripts. * CD-HIT (CD-HIT-EST) clusters similar proteins (DNAs) into clusters that meet a user-defined similarity threshold. * CD-HIT-2D (CD-HIT-EST-2D) compares 2 datasets and identifies the sequences in db2 that are similar to db1 above a threshold. * CD-HIT-454 identifies natural and artificial duplicates from pyrosequencing reads. * CD-HIT-OTU cluster rRNA tags into OTUs The usage of other programs and scripts can be found in CD-HIT user''s guide. CD-HIT was originally developed by Dr. Weizhong Li at Dr. Adam Godzik''s Lab at the Burnham Institute (now Sanford-Burnham Medical Research Institute).

View all literature mentions

ArcGIS for Desktop Basic (tool)

RRID:SCR_011081

Geographical information system software produced by Esri.

View all literature mentions

Trimmomatic (tool)

RRID:SCR_011848

Software Java pipeline for trimming tasks for Illumina paired end and single ended data. Flexible Trimmer for Illumina Sequence Data. Pair aware preprocessing tool optimized for Illumina next generation sequencing data. Includes several processing steps for read trimming and filtering. Operating systems Unix/Linux, Mac OS, Windows.

View all literature mentions

Trinity (tool)

RRID:SCR_013048

Software for the efficient and robust de novo reconstruction of transcriptomes from RNA-seq data.

View all literature mentions

quicktree (tool)

RRID:SCR_024205

Software application as implementation of Neighbor-Joining algorithm, capable of reconstructing phylogenies from huge alignments.

View all literature mentions