2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Radiopharmaceuticals as Novel Immune System Tracers.

Advances in radiation oncology | 2022

Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigms for multiple cancers. However, ICI therapy often fails to generate measurable and sustained antitumor responses, and clinically meaningful benefits remain limited to a small proportion of overall patients. A major obstacle to development and effective application of novel therapeutic regimens is optimized patient selection and response assessment. Noninvasive imaging using novel immunoconjugate radiopharmaceuticals (immuno-positron emission tomography and immuno-single-photon emission computed tomography) can assess for expression of cell surface immune markers, such as programmed cell death protein ligand-1 (PD-L1), akin to a virtual biopsy. This emerging technology has the potential to provide clinicians with a quantitative, specific, real-time evaluation of immunologic responses relative to cancer burden in the body. We discuss the rationale for using noninvasive molecular imaging of the programmed cell death protein-1 and PD-L1 axis as a biomarker for immunotherapy and summarize the current status of preclinical and clinical studies examining PD-L1 immuno-positron emission tomography. The strategies described in this review provide insight for future clinical trials exploring the use of immune checkpoint imaging as a biomarker for both ICI and radiation therapy, and for the rational design of combinatorial therapeutic regimens.

Pubmed ID: 36148374 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: K12 CA090625

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions