2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Periodic Artifact Removal With Applications to Deep Brain Stimulation.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society | 2022

Deep brain stimulation (DBS) therapies have shown clinical success in the treatment of a number of neurological illnesses, including obsessive-compulsive disorder, epilepsy, and Parkinson's disease. An emerging strategy for increasing the efficacy of DBS therapies is to develop closed-loop, adaptive DBS systems that can sense biomarkers associated with particular symptoms and in response, adjust DBS parameters in real-time. The development of such systems requires extensive analysis of the underlying neural signals while DBS is on, so that candidate biomarkers can be identified and the effects of varying the DBS parameters can be better understood. However, DBS creates high amplitude, high frequency stimulation artifacts that prevent the underlying neural signals and thus the biological mechanisms underlying DBS from being analyzed. Additionally, DBS devices often require low sampling rates, which alias the artifact frequency, and rely on wireless data transmission methods that can create signal recordings with missing data of unknown length. Thus, traditional artifact removal methods cannot be applied to this setting. We present a novel periodic artifact removal algorithm for DBS applications that can accurately remove stimulation artifacts in the presence of missing data and in some cases where the stimulation frequency exceeds the Nyquist frequency. The numerical examples suggest that, if implemented on dedicated hardware, this algorithm has the potential to be used in embedded closed-loop DBS therapies to remove DBS stimulation artifacts and hence, to aid in the discovery of candidate biomarkers in real-time. Code for our proposed algorithm is publicly available on Github.

Pubmed ID: 36121940 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: UH3 NS100549

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ClinicalTrials.gov (tool)

RRID:SCR_002309

Registry and results database of federally and privately supported clinical trials conducted in United States and around world. Provides information about purpose of trial, who may participate, locations, and phone numbers for more details. This information should be used in conjunction with advice from health care professionals.Offers information for locating federally and privately supported clinical trials for wide range of diseases and conditions. Research study in human volunteers to answer specific health questions. Interventional trials determine whether experimental treatments or new ways of using known therapies are safe and effective under controlled environments. Observational trials address health issues in large groups of people or populations in natural settings. ClinicalTrials.gov contains trials sponsored by National Institutes of Health, other federal agencies, and private industry. Studies listed in database are conducted in all 50 States and in 178 countries.

View all literature mentions