Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Sodium butyrate modulates blood pressure and gut microbiota in maternal tryptophan-free diet-induced hypertension rat offspring.

The Journal of nutritional biochemistry | 2022

Maternal nutrition, gut microbiome composition, and metabolites derived from gut microbiota are closely related to the development of hypertension in offspring. A plethora of metabolites generated from diverse tryptophan metabolic pathways show both beneficial and harmful effects. Butyrate, one of the short-chain fatty acids (SCFAs), has shown vasodilation effects. We examined whether sodium butyrate administration in pregnancy and lactation can prevent hypertension induced by a maternal tryptophan-free diet in adult progeny and explored the protective mechanisms. Pregnant Sprague-Dawley rats received normal chow (CN), tryptophan-free diet (TF), sodium butyrate 400 mg/kg/d in drinking water (CNSB), or TF diet plus sodium butyrate (TFSB) in pregnancy and lactation. Male offspring were sacrificed at the age of 16 weeks (n=8 per group). Compared with normal chow, offspring exposed to the maternal tryptophan-free diet had markedly increased blood pressure, associated with activation of the renin-angiotensin system (RAS). Treatment with sodium butyrate rescued maternal TF-exposed offspring from hypertension. The protective effect of sodium butyrate is related to alterations to microbiome composition, increased renal expression of SCFA receptor G protein-coupled receptor 41 (GPR41) and GPR109A, and restoration of RAS balance. In summary, these results suggest that sodium butyrate protects against maternal TF-induced offspring hypertension, likely by modulating gut microbiota, its derived metabolites, and the RAS.

Pubmed ID: 35724813 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


QIIME (tool)

RRID:SCR_008249

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 23,2023.Software package for comparison and analysis of microbial communities, primarily based on high-throughput amplicon sequencing data, but also supporting analysis of other types of data. QIMME analyzes and transforms raw sequencing data generated on Illumina or other platforms to publication quality graphics and statistics.

View all literature mentions

Agilent Technologies (tool)

RRID:SCR_013575

Company provides laboratories worldwide with analytical instruments and supplies, clinical and diagnostic testing services, consumables, applications and expertise in life sciences and applied chemical markets.

View all literature mentions

LEfSe (tool)

RRID:SCR_014609

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Algorithm for high-dimensional biomarker discovery and explanation that identifies genes, pathways, or taxa characterizing the differences between two or more biological conditions. The algorithm identifies features that are statistically different among biological classes, then performs additional tests to assess whether these differences are consistent with respect to expected biological behavior. Statistical significance and biological relevance are emphasized.

View all literature mentions

SD (tool)

RRID:RGD_70508

Rattus norvegicus with name SD from RGD.

View all literature mentions