Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Immunophenotyping of Acute Inflammatory Exacerbations of Lung Injury Driven by Mutant Surfactant Protein-C: A Role for Inflammatory Eosinophils.

Frontiers in pharmacology | 2022

Acute inflammatory exacerbations (AIEs) represent immune-driven deteriorations of many chronic lung conditions, including COPD, asthma, and pulmonary fibrosis (PF). The first line of therapy is represented by broad-spectrum immunomodulation. Among the several inflammatory populations mobilizing during AIEs, eosinophils have been identified as promising indicators of an active inflammatory exacerbation. To better study the eosinophil-parenchymal crosstalk during AIE-PF, this work leverages a clinically relevant model of inflammatory exacerbations triggered by inducible expression of a mutation in the alveolar epithelial type 2 cell Surfactant Protein-C gene [SP-CI73T]. Unbiased single-cell sequencing analysis of controls and SP-CI73T mutants at a time coordinated with peak eosinophilia (14 days) defined heightened inflammatory activation, chemotaxis, and survival signaling (IL-6, IL-4/13, STAT3, Glucocorticoid Receptor, mTOR, and MYC) in eosinophils. To study the impact of eosinophils in inflammatory exacerbations, the SP-CI73T line was crossed with eosinophil lineage deficient mice (GATA1Δdbl) to produce the SP-CI73TGATA1KO line. Time course analysis (7-42 days) demonstrated improved lung histology, survival, and reduced inflammation in SP-CI73TGATA1KO cohorts. Spectral flow cytometry of tissue digests confirmed eosinophil depletion in GATA1KO mice and the absence of a compensatory shift in neutrophils and immature monocyte recruitment. Eosinophil deletion resulted in progressive monocyte-derived macrophage accumulation (14 days post-injury), combined with declines in CD3+CD4+ lymphocyte and B220+ B cell abundance. Histochemical analysis revealed atypical inflammatory cell activation in SP-CI73TGATA1KO mice, with reduced numbers of Arg-1+ and iNOS+ cells, but increases in tgfb1 mRNA expression in bronchoalveolar lavage cells and tissue. Dexamethasone treatment (1 mg/kg daily, i.p.) was utilized to investigate corticosteroid efficacy in highly eosinophilic exacerbations induced by mutant SP-CI73T. Dexamethasone successfully reduced total and eosinophil (CD11b+SigF+CD11c-) counts at 14 days and was linked to reduced evidence of structural damage and perivascular infiltrate. Together, these results illustrate the deleterious role of eosinophils in inflammatory events preceding lung fibrosis and demonstrate the efficacy of corticosteroid treatment in highly eosinophilic exacerbations induced by mutant SP-CI73T.

Pubmed ID: 35571100 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: U01 HL152970
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL145408
  • Agency: BLRD VA, United States
    Id: I01 BX001176
  • Agency: NIEHS NIH HHS, United States
    Id: R01 ES032553
  • Agency: NIEHS NIH HHS, United States
    Id: P30 ES013508

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions