2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Transsynaptic cerebellin 4-neogenin 1 signaling mediates LTP in the mouse dentate gyrus.

Proceedings of the National Academy of Sciences of the United States of America | 2022

Five decades ago, long-term potentiation (LTP) of synaptic transmission was discovered at entorhinal cortex→dentate gyrus (EC→DG) synapses, but the molecular determinants of EC→DG LTP remain largely unknown. Here, we show that the presynaptic neurexin–ligand cerebellin-4 (Cbln4) is highly expressed in the entorhinal cortex and essential for LTP at EC→DG synapses, but dispensable for basal synaptic transmission at these synapses. Cbln4, when bound to cell-surface neurexins, forms transcellular complexes by interacting with postsynaptic DCC (deleted in colorectal cancer) or neogenin-1. DCC and neogenin-1 act as netrin and repulsive guidance molecule-a (RGMa) receptors that mediate axon guidance in the developing brain, but their binding to Cbln4 raised the possibility that they might additionally function in the mature brain as postsynaptic receptors for presynaptic neurexin/Cbln4 complexes, and that as such receptors, DCC or neogenin-1 might mediate EC→DG LTP that depends on Cbln4. Indeed, we observed that neogenin-1, but not DCC, is abundantly expressed in dentate gyrus granule cells, and that postsynaptic neogenin-1 deletions in dentate granule cells blocked EC→DG LTP, but again did not affect basal synaptic transmission similar to the presynaptic Cbln4 deletions. Thus, binding of presynaptic Cbln4 to postsynaptic neogenin-1 renders EC→DG synapses competent for LTP, but is not required for establishing these synapses or for otherwise enabling their function.

Pubmed ID: 35544694 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: R01 MH052804
  • Agency: NIMH NIH HHS, United States
    Id: R37 MH052804

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Transcriptomics Explorer (tool)

RRID:SCR_017567

Software tool to visualize and analyze transcriptomics data and transcriptomic cell types for mouse and human, all directly in web browser. To explore gene expression heatmap across cell types in datasets, search for genes of interest, explore tSNE visualization, colored by cell types or expression of genes of interest, visualize dataset’s sampling strategy to see how cells and nuclei were sampled across brain areas, cortical layer, and other dimensions, find cell type of interest in one visualization and see its characteristics in different visualization.Used for Allen Brain Map Cell Types Database to Browse Data: Human - Multiple Cortical Areas, and Mouse - Cortex and Hippocampus.

View all literature mentions