Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels.

Communications biology | 2022

Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10-8. We additionally detected 14 novel loci at P < 5 × 10-7, specific to either Europeans or African Americans. Using whole-exome sequence data in 2,279 European participants, we identified ten genes associated with circulating total-tau when aggregating rare variants. Our genetic study sheds light on genes reported to be associated with neurological diseases including stroke, Alzheimer's, and Parkinson's (F5, MAP1B, and BCAS3), with Alzheimer's pathological hallmarks (ADAMTS12, IL15, and FHIT), or with an important function in the brain (PARD3, ELFN2, UBASH3B, SLIT3, and NSD3), and suggests that the genetic architecture of circulating total-tau may differ according to ancestry.

Pubmed ID: 35396452 RIS Download

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: K99 AG066849
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL105756
  • Agency: NIA NIH HHS, United States
    Id: U01 AG058589
  • Agency: NIA NIH HHS, United States
    Id: K01 AG071689
  • Agency: NIA NIH HHS, United States
    Id: U01 AG068221
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS017950
  • Agency: NIA NIH HHS, United States
    Id: R01 AG064955
  • Agency: NHLBI NIH HHS, United States
    Id: U01 HL096917
  • Agency: NIA NIH HHS, United States
    Id: R01 AG022381
  • Agency: NIA NIH HHS, United States
    Id: R01 AG050595

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


METAL (tool)

RRID:SCR_002013

Software application designed to facilitate meta-analysis of large datasets (such as several whole genome scans) in a convenient, rapid and memory efficient manner. (entry from Genetic Analysis Software)

View all literature mentions

ADNI - Alzheimer's Disease Neuroimaging Initiative (tool)

RRID:SCR_003007

Database of the results of the ADNI study. ADNI is an initiative to develop biomarker-based methods to detect and track the progression of Alzheimer's disease (AD) that provides access to qualified scientists to their database of imaging, clinical, genomic, and biomarker data.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

Functional Mapping and Annotation of Genome Wide Association Studies (tool)

RRID:SCR_017521

Platform that can be used to annotate, prioritize, visualize and interpret GWAS results. To submit your own GWAS, login is required for security reason. You can browse public results of FUMA from Browse Public Results without registration or login.

View all literature mentions