Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion.

Nature communications | 2022

Glucuronoyl esterases (GEs) are α/β serine hydrolases and a relatively new addition in the toolbox to reduce the recalcitrance of lignocellulose, the biggest obstacle in cost-effective utilization of this important renewable resource. While biochemical and structural characterization of GEs have progressed greatly recently, there have yet been no mechanistic studies shedding light onto the rate-limiting steps relevant for biomass conversion. The bacterial GE OtCE15A possesses a classical yet distinctive catalytic machinery, with easily identifiable catalytic Ser/His completed by two acidic residues (Glu and Asp) rather than one as in the classical triad, and an Arg side chain participating in the oxyanion hole. By QM/MM calculations, we identified deacylation as the decisive step in catalysis, and quantified the role of Asp, Glu and Arg, showing the latter to be particularly important. The results agree well with experimental and structural data. We further calculated the free-energy barrier of post-catalysis dissociation from a complex natural substrate, suggesting that in industrial settings non-catalytic processes may constitute the rate-limiting step, and pointing to future directions for enzyme engineering in biomass utilization.

Pubmed ID: 35304453 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BRENDA (tool)

RRID:SCR_002997

Main database of functional biochemical and molecular enzyme data that provides access to seven interconnected databases. It contains 2.7 million manually annotated data on enzyme occurrence, function, kinetics and molecular properties. The majority of the data are manually extracted from the primary literature. Each entry is connected to a reference and the source organism. Enzyme ligands are stored with their structures and can be accessed via their names, synonyms or via a structure search. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are based on text mining methods and represent a complete survey of PubMed abstracts with information on enzymes in different organisms, tissues or organelles. The supplemental database DRENDA provides more than 910 000 new EC number-disease relations in more than 510 000 references from automatic search and a classification of enzyme-disease-related information. KENDA (Kinetic ENzyme DAta), a new amendment extracts and displays kinetic values from PubMed abstracts. The integration of the EnzymeDetector offers an automatic comparison, evaluation and prediction of enzyme function annotations for prokaryotic genomes. The biochemical reaction database BKM-react contains non-redundant enzyme-catalyzed and spontaneous reactions and was developed to facilitate and accelerate the construction of biochemical models. The content covers information on function, structure, occurrence, preparation and application of enzymes as well as properties of mutants and engineered variants. BRENDA provides viewing options such as the display of the statistics of functional parameters and the 3D view of protein sequence and structure features. Furthermore a ligand summary shows comprehensive information on the BRENDA ligands. The enzymes are linked to their respective pathways and can be viewed in pathway maps. The disease text mining part is strongly enhanced. It is possible to submit new, not yet classified enzymes to BRENDA, which then are reviewed and classified by the International Union of Biochemistry and Molecular Biology. A new SBML output format of BRENDA kinetic data allows the construction of organism-specific metabolic models. The enzymes are classified according to the Enzyme Commission list of enzymes. Some 5000 different enzymes are covered. Frequently enzymes with very different properties are included under the same EC number. Although they intend to give a representative overview on the characteristics and variability of each enzyme the Handbook is not a compendium. The reader will have to go to the primary literature for more detailed information. Naturally it is not possible to cover all the numerous literature references for each enzyme (for some enzymes up to 40000) if the data representation is to be concise as is intended. The data collection is being developed into a metabolic network information system with links to Enzyme expression and regulation information. BRENDA SOAP Webservice is available.

View all literature mentions

CAZy- Carbohydrate Active Enzyme (tool)

RRID:SCR_012909

Database that describes the families of structurally-related catalytic and carbohydrate-binding modules (or functional domains) of enzymes that degrade, modify, or create glycosidic bonds. This specialist database is dedicated to the display and analysis of genomic, structural and biochemical information on Carbohydrate-Active Enzymes (CAZymes). CAZy data are accessible either by browsing sequence-based families or by browsing the content of genomes in carbohydrate-active enzymes. New genomes are added regularly shortly after they appear in the daily releases of GenBank. New families are created based on published evidence for the activity of at least one member of the family and all families are regularly updated, both in content and in description. An original aspect of the CAZy database is its attempt to cover all carbohydrate-active enzymes across organisms and across subfields of glycosciences. One can search for CAZY Family pages using the Protein Accession (Genpept Accession, Uniprot Accession or PDB ID), Cazy family name or EC number. In addition, genomes can be searched using the NCBI TaxID. This search can be complemented by Google-based searches on the CAZy site.

View all literature mentions

Phaser (tool)

RRID:SCR_014219

Crystallographic software which solves structures using algorithms and automated rapid search calculations to perform molecular replacement and experimental phasing methods.

View all literature mentions

Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

NAMD (tool)

RRID:SCR_014894

Parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD uses the popular molecular graphics program VMD for simulation setup and trajectory analysis, but is also file-compatible with AMBER, CHARMM, and X-PLOR.

View all literature mentions