Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans.

eLife | 2022

Animals that lose one sensory modality often show augmented responses to other sensory inputs. The mechanisms underpinning this cross-modal plasticity are poorly understood. We probe such mechanisms by performing a forward genetic screen for mutants with enhanced O2 perception in Caenorhabditis elegans. Multiple mutants exhibiting increased O2 responsiveness concomitantly show defects in other sensory responses. One mutant, qui-1, defective in a conserved NACHT/WD40 protein, abolishes pheromone-evoked Ca2+ responses in the ADL pheromone-sensing neurons. At the same time, ADL responsiveness to pre-synaptic input from O2-sensing neurons is heightened in qui-1, and other sensory defective mutants, resulting in enhanced neurosecretion although not increased Ca2+ responses. Expressing qui-1 selectively in ADL rescues both the qui-1 ADL neurosecretory phenotype and enhanced escape from 21% O2. Profiling ADL neurons in qui-1 mutants highlights extensive changes in gene expression, notably of many neuropeptide receptors. We show that elevated ADL expression of the conserved neuropeptide receptor NPR-22 is necessary for enhanced ADL neurosecretion in qui-1 mutants, and is sufficient to confer increased ADL neurosecretion in control animals. Sensory loss can thus confer cross-modal plasticity by changing the peptidergic connectome.

Pubmed ID: 35201977 RIS Download

Associated grants

  • Agency: Wellcome Trust, United Kingdom
  • Agency: Medical Research Council, United Kingdom
    Id: MC_U105178786
  • Agency: NIH HHS, United States
    Id: P40 OD010440
  • Agency: Wellcome Trust, United Kingdom
    Id: 209504/Z/17/Z

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Caenorhabditis Genetics Center (tool)

RRID:SCR_007341

Center that acquires, maintains, and distributes genetic stocks and information about stocks of the small free-living nematode Caenorhabditis elegans for use by investigators initiating or continuing research on this genetic model organism. A searchable strain database, general information about C. elegans, and links to key Web sites of use to scientists, including WormBase, WormAtlas, and WormBook are available.

View all literature mentions

PRAGUI Exploratory Analysis Tool (software resource)

RRID:SCR_021691

Software tool for PRAGUI pipeline exploratory analysis.

View all literature mentions

cross filter (software resource)

RRID:SCR_022008

Software pipeline to analyse genome data from forward genetic screen. Identification of causal variants for specific phenotype.

View all literature mentions

Neuronanalyser (data analysis software)

RRID:SCR_022007

Software analysis toolkit for tracking blobs and extracting intensity values from imaging data, designed for use with ratiometric fluorescent sensors.

View all literature mentions

MATLAB (software resource)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions