Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Uip4p modulates nuclear pore complex function in Saccharomyces cerevisiae.

Nucleus (Austin, Tex.) | 2022

A double membrane bilayer perforated by nuclear pore complexes (NPCs) governs the shape of the nucleus, the prominent distinguishing organelle of a eukaryotic cell. Despite the absence of lamins in yeasts, the nuclear morphology is stably maintained and shape changes occur in a regulated fashion. In a quest to identify factors that contribute to regulation of nuclear shape and function in Saccharomyces cerevisiae, we used a fluorescence imaging based approach. Here we report the identification of a novel protein, Uip4p, that is required for regulation of nuclear morphology. Loss of Uip4 compromises NPC function and loss of nuclear envelope (NE) integrity. Our localization studies show that Uip4 localizes to the NE and endoplasmic reticulum (ER) network. Furthermore, we demonstrate that the localization and expression of Uip4 is regulated during growth, which is crucial for NPC distribution.

Pubmed ID: 35171083 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

STOP (tool)

RRID:SCR_005322

STOP is a multi-ontology enrichment analysis tool. It is intended to be used to help from hypothesis about large sets of genes or proteins. The annoations used for enrichment analysis are obtained automatically applying text descriptions of genes and proteins to the NCBO annotator. Text for genes is found using NCBI entrez gene, and text for proteins is found using UniProt. The text is then run though NCBO annotator with all the available ontologies. For more information about the NCBO annotator please visit: http://bioportal.bioontology.org/ The goal of National Center for Biomedical Ontology (NCBO) is to support biomedical researchers in their knowledge-intensive work, by providing online tools and a Web portal enabling them to access, review, and integrate disparate ontological resources in all aspects of biomedical investigation and clinical practice. A major focus of our work involves the use of biomedical ontologies to aid in the management and analysis of data derived from complex experiments. This work is an expansion of the work of Rob Tirrell and others on RANSUM This probject would not be possible without the contributions of Emily Howe, Uday Evani, Corey Powell, Mathew Fleisch, Tobias Wittkop, Ari Berman, Nigam Shah and Sean Mooney An account is required.

View all literature mentions

Abcam (tool)

RRID:SCR_012931

A commercial antibody supplier which supplies primary and secondary antibodies, biochemicals, proteins, peptides, lysates, immunoassays and other kits.

View all literature mentions