Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A direct test of competitive versus cooperative episodic-procedural network dynamics in human memory.

Cerebral cortex (New York, N.Y. : 1991) | 2022

Classical lesion studies led to a consensus that episodic and procedural memory arises from segregated networks identified with the hippocampus and the caudate nucleus, respectively. Neuroimaging studies, however, show that competitive and cooperative interactions occur between networks during memory tasks. Furthermore, causal experiments to manipulate connectivity between these networks have not been performed in humans. Although nodes common to both networks, such as the precuneus and ventrolateral thalamus, may mediate their interaction, there is no experimental evidence for this. We tested how network-targeted noninvasive brain stimulation affects episodic-procedural network interactions and how these network manipulations affect episodic and procedural memory in healthy young adults. Compared to control (vertex) stimulation, hippocampal network-targeted stimulation increased within-network functional connectivity and hippocampal connectivity with the caudate. It also increased episodic, relative to procedural, memory, and this persisted one week later. The differential effect on episodic versus procedural memory was associated with increased functional connectivity between the caudate, precuneus, and ventrolateral thalamus. These findings provide direct evidence of episodic-procedural network competition, mediated by regions common to both networks. Enhanced hippocampal network connectivity may boost episodic, but decrease procedural, memory by co-opting resources shared between networks.

Pubmed ID: 35106536 RIS Download

Associated grants

  • Agency: Intramural NIH HHS, United States
    Id: ZIA NS002977

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


R Project for Statistical Computing (software resource)

RRID:SCR_001905

Software environment and programming language for statistical computing and graphics. R is integrated suite of software facilities for data manipulation, calculation and graphical display. Can be extended via packages. Some packages are supplied with the R distribution and more are available through CRAN family.It compiles and runs on wide variety of UNIX platforms, Windows and MacOS.

View all literature mentions

Psychophysics Toolbox (software resource)

RRID:SCR_002881

A free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer.

View all literature mentions

MATLAB (software resource)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

Analysis of Functional NeuroImages (software resource)

RRID:SCR_005927

Set of (mostly) C programs that run on X11+Unix-based platforms (Linux, Mac OS X, Solaris, etc.) for processing, analyzing, and displaying functional MRI (FMRI) data defined over 3D volumes and over 2D cortical surface meshes. AFNI is freely distributed as source code plus some precompiled binaries.

View all literature mentions