Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Variant interpretation in molecular autopsy: a useful dilemma.

International journal of legal medicine | 2022

Sudden cardiac death (SCD) in adolescents and young adults may be the first manifestation of an inherited arrhythmic syndrome. Thus identification of a genetic origin in sudden death cases deemed inconclusive after a comprehensive autopsy and may help to reduce the risk of lethal episodes in the remaining family. Using next-generation sequencing (NGS), a large number of variants of unknown significance (VUS) are detected. In the majority of cases, there is insufficient evidence of pathogenicity, representing a huge dilemma in current genetic investigations. Misinterpretation of such variants may lead to inaccurate genetic diagnoses and/or the adoption of unnecessary and/or inappropriate therapeutic approaches. In our study, we applied current (ACMG) recommendations for variant classification in post-mortem genetic screening of a cohort of 56 SCD victims. We identified a total 53 rare protein-altering variants (MAF < 0.2%) classified as VUS or worse. Twelve percent of the cases exhibited a clinically actionable variant (pathogenic, likely pathogenic or VUS - potentially pathogenic) that would warrant cascade genetic screening in relatives. Most of the variants detected by means of the post-mortem genetic investigations were VUS. Thus, genetic testing by itself might be fairly meaningless without supporting background data. This data reinforces the need for an experienced multidisciplinary team for obtaining reliable and accountable interpretations of variant significance for elucidating potential causes for SCDs in the young. This enables the early identification of relatives at risk or excludes family members as genetic carriers. Also, development of adequate forensic guidelines to enable appropriate interpretation of rare genetic variants is fundamental.

Pubmed ID: 35091851 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Human Gene Mutation Database (tool)

RRID:SCR_001621

Curated database of known (published) gene lesions responsible for human inherited disease.

View all literature mentions

dbSNP (tool)

RRID:SCR_002338

Database as central repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms. Distinguishes report of how to assay SNP from use of that SNP with individuals and populations. This separation simplifies some issues of data representation. However, these initial reports describing how to assay SNP will often be accompanied by SNP experiments measuring allele occurrence in individuals and populations. Community can contribute to this resource.

View all literature mentions

1000 Genomes Project and AWS (tool)

RRID:SCR_008801

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

View all literature mentions

MutationTaster (tool)

RRID:SCR_010777

Evaluates disease-causing potential of sequence alterations.

View all literature mentions

GensearchNGS (tool)

RRID:SCR_010802

An integrated software solution for the analysis of DNA-Seq data from commonly used NGS equipments such as Roche/454, Illumina and Ion Torrent.

View all literature mentions

SIFT (tool)

RRID:SCR_012813

Data analysis service to predict whether an amino acid substitution affects protein function based on sequence homology and the physical properties of amino acids. SIFT can be applied to naturally occurring nonsynonymous polymorphisms and laboratory-induced missense mutations. (entry from Genetic Analysis Software) Web service is also available.

View all literature mentions

Agilent Technologies (tool)

RRID:SCR_013575

Company provides laboratories worldwide with analytical instruments and supplies, clinical and diagnostic testing services, consumables, applications and expertise in life sciences and applied chemical markets.

View all literature mentions