Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Post-concussion symptoms and chronic pain after mild traumatic brain injury are modulated by multiple locus effect in the BDNF gene through the expression of antisense: A pilot prospective control study.

Canadian journal of pain = Revue canadienne de la douleur | 2017

Background: Mild traumatic brain injury (mTBI) often results in post-concussion symptoms, chronic pain, and sleepiness. Genetic factors are thought to play an important role in poor prognosis. Aims: The aims of this study are to (1) document the prevalence of pain and post-concussion symptoms in mTBI patients in acute and chronic phases (2) determine whether candidate genes predispose to post-concussive symptoms and pain. Methods: Posttraumatic symptoms, evaluated using the Rivermead Post-Concussion Symptoms Questionnaire, and pain were assessed in 94 mTBI patients in the acute phase as well as in 22 healthy controls. Assessment was repeated in 36 patients after one year who agreed to participate in the follow-up visit. Gene polymorphisms and expression were assessed in mTBI patients and healthy controls. Results: In the acute phase, mTBI patients with pain (69%) presented more psychological symptoms and sleepiness and were less able to return to work than those without pain. At one year, 19% of mTBI patients had persistent pain and psychological distress. Two haplotypes (H2 and H3) in the brain-derived neurotrophic factor (BDNF) gene were shown to be respectively deleterious and protective against post-concussion symptoms and pain in both acute and chronic phases. Protective haplotype H3 was associated with a decreased expression of the anti-sense of BDNF (BDNF-AS). Deleterious haplotype H2 predicted the development of chronic pain at one year, whereas H3 was protective. Conclusions: This pilot study suggests a protective mechanism of a multilocus effect in BDNF, through BDNF-AS, against post-concussion symptoms and pain in the acute phase and possibly chronic pain at one year post-mTBI. The role of antisense RNA should be validated in larger cohorts.

Pubmed ID: 35005347 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PLINK (tool)

RRID:SCR_001757

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

View all literature mentions

Haploview (tool)

RRID:SCR_003076

A Java based software tool designed to simplify and expedite the process of haplotype analysis by providing a common interface to several tasks relating to such analyses. Haploview currently allows users to examine block structures, generate haplotypes in these blocks, run association tests, and save the data in a number of formats. All functionalities are highly customizable. (entry from Genetic Analysis Software) * LD & haplotype block analysis * haplotype population frequency estimation * single SNP and haplotype association tests * permutation testing for association significance * implementation of Paul de Bakker's Tagger tag SNP selection algorithm. * automatic download of phased genotype data from HapMap * visualization and plotting of PLINK whole genome association results including advanced filtering options Haploview is fully compatible with data dumps from the HapMap project and the Perlegen Genotype Browser. It can analyze thousands of SNPs (tens of thousands in command line mode) in thousands of individuals. Note: Haploview is currently on a development and support freeze. The team is currently looking at a variety of options in order to provide support for the software. Haploview is an open source project hosted by SourceForge. The source can be downloaded at the SourceForge project site.

View all literature mentions

QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions