Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Novel Recombinant Influenza Virus Neuraminidase Vaccine Candidate Stabilized by a Measles Virus Phosphoprotein Tetramerization Domain Provides Robust Protection from Virus Challenge in the Mouse Model.

mBio | 2021

Current seasonal influenza virus vaccines do not induce robust immune responses to neuraminidase. Several factors, including immunodominance of hemagglutinin over neuraminidase, instability of neuraminidase in vaccine formulations, and variable, nonstandardized amounts of neuraminidase in the vaccines, may contribute to this effect. However, vaccines that induce strong antineuraminidase immune responses would be beneficial, as they are highly protective. Furthermore, antigenic drift is slower for neuraminidase than for hemagglutinin, potentially providing broader coverage. Here, we designed stabilized recombinant versions of neuraminidase by replacing the N-terminal cytoplasmic domain, transmembrane, and extracellular stalk with tetramerization domains from the measles or Sendai virus phosphoprotein or from an Arabidopsis thaliana transcription factor. The measles virus tetramerization domain-based construct, termed N1-MPP, was chosen for further evaluation, as it retained antigenicity, neuraminidase activity, and structural integrity and provided robust protection in vivo against lethal virus challenge in the mouse model. We tested N1-MPP as a standalone vaccine, admixed with seasonal influenza virus vaccines, or given with seasonal influenza virus vaccines but in the other leg of the mouse. Admixture with different formulations of seasonal vaccines led to a weak neuraminidase response, suggesting a dominant effect of hemagglutinin over neuraminidase when administered in the same formulation. However, administration of neuraminidase alone or with seasonal vaccine administered in the alternate leg of the mouse induced robust antibody responses. Thus, this recombinant neuraminidase construct is a promising vaccine antigen that may enhance and broaden protection against seasonal influenza viruses. IMPORTANCE Influenza virus infections remain a high risk to human health, causing up to 650,000 deaths worldwide every year, with an enormous burden on the health care system. Since currently available seasonal vaccines are only partially effective and often mismatched to the circulating strains, a broader protective influenza virus vaccine is needed. Here, we generated a recombinant influenza virus vaccine candidate based on the more conserved neuraminidase surface glycoprotein in order to induce a robust and broader protective immune response against a variety of circulating influenza virus strains.

Pubmed ID: 34809451 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: 75N93019C00051
  • Agency: NIAID NIH HHS, United States
    Id: 75N93019C00055
  • Agency: NIAID NIH HHS, United States
    Id: UM1 AI148684

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

Joint Center for Structural Genomics (tool)

RRID:SCR_008251

The JCSG is a multi-institutional consortium that aims to explore the expanding protein universe to find new challenges and opportunities to significantly contribute to new biology, chemistry and medicine through development of HT approaches to structural genomics. The mission of JCSG is to to operate a robust HT protein structure determination pipeline as a large-scale production center for PSI-2. A major goal is to ensure that innovative high-throughput approaches are developed that advance not only structural genomics, but also structural biology in general, via investigation of large numbers of high-value structures that populate protein fold and family space and by increasing the efficiency of structure determination at substantially reduced cost. The JCSG centralizes each core activity into single dedicated sites, each handling distinct, but interconnected objectives. This unique approach allows each specialized group to focus on its own area of expertise and provides well-defined interfaces among the groups. In addition, this approach addresses the requirements for the scalability needed to process large numbers of targets at a greatly reduced cost per target. JCSG production groups are: - Administrative Core - Bioinformatics Core - Crystallomics Core - Structure Determination Core - NMR Core JCSG is deeply committed to the development of new technologies that facilitate high throughput structural genomics. The areas of development include hardware, software, new experimental methods, and adaptation of existing technologies to advance genome research. In the hardware arena, their commitment is to the development of technologies that accelerate structure solution by increasing throughput rates at every stage of the production pipeline. Therefore, one major area of hardware development has been the implementation of robotics. In the software arena, they have developed enterprise resource software that track success, failures, and sample histories from target selection to PDB deposition, annotation and target management tools, and helper applications aimed at facilitating and automating multiple steps in the pipeline. Sponsors: The Joint Center for Structural Genomics is funded by the National Institute of General Medical Sciences (NIGMS), as part of the second phase of the Protein Structure Initiative (PSI) of the National Institutes of Health (U54 GM074898).

View all literature mentions

Sigma-Aldrich (tool)

RRID:SCR_008988

American chemical, life science and biotechnology company owned by Merck KGaA. Merger of Sigma Chemical Company and Aldrich Chemical Company. Provides organic and inorganic chemicals, building blocks, reagents, advanced materials and stable isotopes for chemical synthesis, medicinal chemistry and materials science, antibiotics, buffers, carbohydrates, enzymes, forensic tools, hematology and histology, nucleotides, proteins, peptides, amino acids and their derivatives.

View all literature mentions

Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

MolProbity (tool)

RRID:SCR_014226

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

View all literature mentions

MDCK (tool)

RRID:CVCL_0422

Cell line MDCK is a Spontaneously immortalized cell line with a species of origin Canis lupus familiaris

View all literature mentions

BALB/cAnNCrl (tool)

RRID:MGI:2683685

laboratory mouse with name BALB/cAnNCrl from MGI.

View all literature mentions