2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Chemical Genetics Screen Identifies COPB2 Tool Compounds That Alters ER Stress Response and Induces RTK Dysregulation in Lung Cancer Cells.

Journal of molecular biology | 2021

Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.

Pubmed ID: 34662547 RIS Download

Associated grants

  • Agency: CIHR, Canada
    Id: 420989

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions

Knime (tool)

RRID:SCR_006164

KNIME (Konstanz Information Miner) is a user-friendly and comprehensive Open-Source data integration, processing, analysis, and exploration platform. KNIME (naim) is a user-friendly graphical workbench for the entire analysis process: data access, data transformation, initial investigation, powerful predictive analytics, visualization and reporting. The open integration platform provides over 1000 modules (nodes), including those of the KNIME community and its extensive partner network. KNIME can be downloaded onto the desktop and used free of charge. KNIME products include additional functionalities such as shared repositories, authentication, remote execution, scheduling, SOA integration and a web user interface as well as world-class support. Robust big data extensions are available for distributed frameworks such as Hadoop. KNIME is used by over 3000 organizations in more than 60 countries. The modular data exploration platform, initially developed at the University of Konstanz, Germany, enables the user to visually create data flows, execute selected analysis steps, and later investigate the results through interactive views on data and models. KNIME is a proven integration platform for tools of numerous vendors due to its open and modular API. The KNIME.com product pipeline includes an Enterprise Server, Cluster Execution, Reporting solutions, and professional KNIME support subscriptions. KNIME.com also offer services such as data analysis, hands-on training and the development of customized components for KNIME.

View all literature mentions

CellProfiler Image Analysis Software (tool)

RRID:SCR_007358

Software tool to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. It counts cells and also measures the size, shape, intensity and texture of every cell (and every labeled subcellular compartment) in every image. It was designed for high throughput screening but can perform automated image analysis for images from time-lapse movies and low-throughput experiments. CellProfiler has an increasing number of algorithms to identify and measure properties of neuronal cell types.

View all literature mentions

IMR-90 (tool)

RRID:CVCL_0347

Cell line IMR-90 is a Finite cell line with a species of origin Homo sapiens

View all literature mentions

MCF-10A (tool)

RRID:CVCL_0598

Cell line MCF-10A is a Spontaneously immortalized cell line with a species of origin Homo sapiens

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

NCI-H460 (tool)

RRID:CVCL_0459

Cell line NCI-H460 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions