Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Longitudinal analysis of human humoral responses after vaccination with a live attenuated V. cholerae vaccine.

PLoS neglected tropical diseases | 2021

Vibrio cholerae is a bacterial pathogen which causes the severe acute diarrheal disease cholera. Given that a symptomatic incident of cholera can lead to long term protection, a thorough understanding of the immune response to this pathogen is needed to identify parameters critical to the generation and durability of immunity. To approach this, we utilized a live attenuated cholera vaccine to model the response to V. cholerae infection in 12 naïve subjects. We found that this live attenuated vaccine induced durable vibriocidal antibody titers that were maintained at least one year after vaccination. Similar to what we previously reported in infected patients from Bangladesh, we found that vaccination induced plasmablast responses were primarily specific to the two immunodominant antigens lipopolysaccharide (LPS) and cholera toxin (CT). Interestingly, the magnitude of the early plasmablast response at day 7 predicted the serological outcome of vaccination at day 30. However, this correlation was no longer present at later timepoints. The acute responses displayed preferential immunoglobulin isotype usage, with LPS specific cells being largely IgM or IgA producing, while cholera toxin responses were predominantly IgG. Finally, CCR9 was highly expressed on vaccine induced plasmablasts, especially on IgM and IgA producing cells, suggesting a role in migration to the gastrointestinal tract. Collectively, these findings demonstrate that the use of a live attenuated cholera vaccine is an effective tool to examine the primary and long-term immune response following V. cholerae exposure. Additionally, it provides insight into the phenotype and specificity of the cells which likely return to and mediate immunity at the intestinal mucosa. A thorough understanding of these properties both in peripheral blood and in the intestinal mucosae will inform future vaccine development against both cholera and other mucosal pathogens. Trial Registration: NCT03251495.

Pubmed ID: 34478460 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: R01 AI137127
  • Agency: NIAID NIH HHS, United States
    Id: U19 AI057266

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FlowJo (tool)

RRID:SCR_008520

Software for single-cell flow cytometry analysis. Its functions include management, display, manipulation, analysis and publication of the data stream produced by flow and mass cytometers.

View all literature mentions

Millipore (tool)

RRID:SCR_008983

An Antibody supplier

View all literature mentions