Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids.

Journal of anatomy | 2022

Ancestors of the Antarctic icefishes (family Channichthyidae) were benthic and had no swim bladder, making it energetically expensive to rise from the ocean floor. To exploit the water column, benthopelagic icefishes were hypothesized to have evolved a skeleton with "reduced bone," which gross anatomical data supported. Here, we tested the hypothesis that changes to icefish bones also occurred below the level of gross anatomy. Histology and micro-CT imaging of representative craniofacial bones (i.e., ceratohyal, frontal, dentary, and articular) of extant Antarctic fish species specifically evaluated two features that might cause the appearance of "reduced bone": bone microstructure (e.g., bone volume fraction and structure linear density) and bone mineral density (BMD, or mass of mineral per volume of bone). Measures of bone microstructure were not consistently different in bones from the icefishes Chaenocephalus aceratus and Champsocephalus gunnari, compared to the related benthic notothenioids Notothenia coriiceps and Gobionotothen gibberifrons. Some quantitative measures, such as bone volume fraction and structure linear density, were significantly increased in some icefish bones compared to homologous bones of non-icefish. However, such differences were rare, and no microstructural measures were consistently different in icefishes across all bones and species analyzed. Furthermore, BMD was similar among homologous bones of icefish and non-icefish Antarctic notothenioids. In summary, "reduced bone" in icefishes was not due to systemic changes in bone microstructure or BMD, raising the prospect that "reduced bone" in icefish occurs only at the gross anatomic level (i.e., smaller or fewer bones). Given that icefishes exhibit delayed skeletal development compared to non-icefish Antarctic fishes, combining these phenotypic data with genomic data might clarify genetic changes driving skeletal heterochrony.

Pubmed ID: 34423431 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIH HHS, United States
    Id: R01AG031922
  • Agency: NIA NIH HHS, United States
    Id: R01 AG031922

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ggplot2 (tool)

RRID:SCR_014601

Open source software package for statistical programming language R to create plots based on grammar of graphics. Used for data visualization to break up graphs into semantic components such as scales and layers.

View all literature mentions