Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells.

Genes & development | 2021

The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity.

Pubmed ID: 34413137 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: P30 DK040561
  • Agency: NIDDK NIH HHS, United States
    Id: T32 DK007260
  • Agency: NIGMS NIH HHS, United States
    Id: P01 GM099134
  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR076394
  • Agency: NIA NIH HHS, United States
    Id: DP1 AG063419
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD058013
  • Agency: NCI NIH HHS, United States
    Id: U54 CA193461
  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR077695
  • Agency: NIA NIH HHS, United States
    Id: R01 AG048917

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


New England Biolabs (tool)

RRID:SCR_013517

An Antibody supplier

View all literature mentions