Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The complete mitochondrial DNA genome of a cone snail, Conus betulinus (Neogastropoda: Conidae), from the South China sea.

Mitochondrial DNA. Part B, Resources | 2021

The complete mitochondrial genome of the tubular cone snail Conus betulinus is presented in this study. The C. betulinus mitochondrial genome was 16,240 bp with 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a non-coding AT-rich region (D-loop). The overall base composition was estimated to be 25.67% for A, 38.26% for T, 21.38% for G, and 14.69% for C, with a high A + T content of 63.93%. Phylogenetic analyses based on 13 PCGs showed the close relationship of vermivorous C. betulinus with the common ancestor of molluscivorous Conus textile and Conus gloriamaris, providing a basis for further studies on the phylogenetics of cone snails according to their dietary type.

Pubmed ID: 34104742 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NCBI (tool)

RRID:SCR_006472

A portal to biomedical and genomic information. NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information for the better understanding of molecular processes affecting human health and disease.

View all literature mentions