2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Comparison of Prediction Models for Mortality Related to Injuries from Road Traffic Accidents after Correcting for Undersampling.

International journal of environmental research and public health | 2021

In this study, four models-logistic regression (LR), random forest (RF), linear support vector machine (SVM), and radial basis function (RBF)-SVM-were compared for their accuracy in determining mortality caused by road traffic injuries. They were tested using five years of national-level data from the Korea Disease Control and Prevention Agency's (KDCA) National Hospital Discharge In-Depth Survey (2013 through to 2017). Model performance was measured for accuracy, precision, recall, F1 score, and Brier score metrics using classification analysis that included characteristics of patients, accidents, injuries, and illnesses. Due to the number of variables and differing units, the rates of survival and mortality related to road traffic accidents were imbalanced, so the data was corrected and standardized before the classification models' performances were compared. Using the importance analysis, the main diagnosis, the type of injury, the site of the injury, the type of injury, the operation status, the type of accident, the role at the time of the accident, and the sex were selected as the analysis factors. The biggest contributing factor was the role in the accident, which is the driver, and the major sites of the injuries were head injuries and deep injuries. Using selected factors, comparisons of the classification performance of each model indicated RBF-SVM and RF models were superior to the others. Of the SVM models, the RBF kernel model was superior to the linear kernel model; it can be inferred that the performance of the high-dimensional transformed RBF model is superior when the dimension is complex because of the use of multiple variables. The findings suggest there are limitations to analyses involving imbalanced, multidimensional original data, such as data on road traffic mortality. Thus, analyses must be performed after imbalances are corrected.

Pubmed ID: 34073920 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions