Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Redd1 knockdown prevents doxorubicin-induced cardiac senescence.

Aging | 2021

Regulated in development and DNA damage response-1 (Redd1) is a stress-response gene that is transcriptionally induced by diverse stressful stimuli to influence cellular growth and survival. Although evidence suggests that aging may drive Redd1 expression in skeletal muscles, the expression patterns and functions of Redd1 in senescent cardiomyocytes remain unspecified. To address this issue, in vitro and in vivo models of cardiomyocyte senescence were established by administration of doxorubicin (Dox). Redd1 overexpression and knockdown was achieved in cultured H9c2 cardiomyocytes and mouse tissues using, respectively, lentivirals and adeno-associated virus 9 (AAV9) vectors. In the hearts of both aged (24 months old) and Dox-treated mice, as well as in Dox-exposed H9c2 cardiomyocytes, high Redd1 expression accompanied the increase in both cellular senescence markers (p16INK4a and p21) and pro-inflammatory cytokine expression indicative of a stress-associated secretory phenotype (SASP). Notably, Redd1 overexpression accentuated, whereas Redd1 silencing markedly attenuated, Dox-induced cardiomyocyte senescence features both in vitro and in vivo. Notably, AAV9-shRNA-mediated Redd1 silencing significantly alleviated Dox-induced cardiac dysfunction. Moreover, through pharmacological inhibition, immunofluorescence, and western blotting, signaling pathway analyses indicated that Redd1 promotes cardiomyocyte senescence as a downstream effector of p38 MAPK to promote NF-kB signaling via p65 phosphorylation and nuclear translocation.

Pubmed ID: 33962393 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

Image Pro Plus (tool)

RRID:SCR_007369

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 18,2023. Software package to capture, process, measure, analyze and share images and data.

View all literature mentions

Proteintech Group (tool)

RRID:SCR_008986

Proteintech Europe Ltd is an ISO 9001:2008 certified company

View all literature mentions

Abcam (tool)

RRID:SCR_012931

A commercial antibody supplier which supplies primary and secondary antibodies, biochemicals, proteins, peptides, lysates, immunoassays and other kits.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions